Waste Management

Management of menstruation, pregnancy prevention, and mitigation of gynecologic-related pathology in the space environment with or without the use of hormonal modalities requires thorough counseling and complex decision-making.
The COVID-19 pandemic has had growing environmental consequences related to plastic use and follow-up waste, but more urgent health issues have far overshadowed the potential impacts. This paper gives a prospective outlook on how the disruption caused by COVID-19 can act as a catalyst for short-term and long-term changes in plastic waste management practices throughout the world. The impact of the pandemic and epidemic following through the life cycles of various plastic products, particularly those needed for personal protection and healthcare, is assessed.
Agricultural wastes are readily available in farming communities and can be utilised for off-grid electrification as an alternative to diesel generators. This work evaluates for the first time the life cycle environmental sustainability of these small-scale systems in the context of Southeast Asia. Rice and coconut residues are considered for direct combustion and gasification, and livestock manure for anaerobic digestion. Overall, anaerobic digestion is the best option for 14 out of 18 impacts estimated through life cycle assessment.
Elsevier, Veterinary Anaesthesia and Analgesia, Volume 46, July 2019
Objective: Attention is drawn to the potential of global warming to influence the health and wellbeing of the human race. There is increasing public and governmental pressure on healthcare organisations to mitigate and adapt to the climate changes that are occurring. The science of anaesthetic agents such as nitrous oxide and the halogenated anaesthetic agents such as greenhouse gases and ozone-depleting agents is discussed and quantified. Additional environmental impacts of healthcare systems are explored.
This study reports plastic debris pollution in the deep-sea based on the information from a recently developed database. The Global Oceanographic Data Center (GODAC) of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) launched the Deep-sea Debris Database for public use in March 2017. The database archives photographs and videos of debris that have been collected since 1983 by deep-sea submersibles and remotely operated vehicles. From the 5010 dives in the database, 3425 man-made debris items were counted.
The use of biomass for energy production is one way to ensure energy security and address the environmental issues related to the use of fossil fuels in developing countries. Small and medium-sized enterprises (SMEs) need electric power and thermal energy for their activities. In Burkina Faso, this type of thermal energy is generally produced by SMEs from firewood. However, cashew companies produce a large amount of waste (shell, press cake, nut shell liquid) which can be converted into fuel. Separating the cashew nut from the shell requires two energy-intensive steps: roasting and drying.
Food waste is a matter intrinsically linked with the growing challenges of food security, resource and environmental sustainability, and climate change. In developed economies, the largest food waste stream occurs in the consumption stage at the end of the food chain. Current approaches for dealing with the wasted food have serious limitations. Historically, livestock animals had functioned as bio-processors, turning human-inedible or -undesirable food materials into meat, eggs, and milk.
Urban source separation infrastructure systems have a promising potential for a more sustainable management of household food waste and wastewaters. A renewed trend of larger implementations of pilot areas with such systems is currently emerging in Northern Europe. This study investigates the drivers behind the decision of stakeholders to implement source separation systems as well as the importance of the previously existing pilot areas in the decision-making process. By means of semi-structured expert interviews, five areas with source separation were characterized and compared.
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications.