Wastewater Reclamation

Climate change, population growth and rapidly increasing urbanisation severely threaten water quantity and quality in Sub-Saharan Africa. Treating wastewater is necessary to preserve the water bodies; reusing treated wastewater appears a viable option that could help to address future water challenges. In areas already suffering energy poverty, the main barrier to wastewater treatment is the high electricity demand of most facilities.
An international review of stormwater regulation and practices, especially for low-exposure, landscape irrigation schemes in urban environments, was undertaken with a view to identifying what could be used in Alberta, Canada. A general lack of clear guidance and regulation to manage stormwater quality and potential public health risks was identified, which could be hindering the uptake of stormwater schemes generally.
Increases in water treatment technology have made water recycling a viable engineering solution to water supply limitations. In spite of this, such water recycling schemes have often been halted by lack of public acceptance. Previous studies have captured the public's attitudes regarding planned reuse schemes, but here we focus on unplanned reuse (i.e. de facto reuse), present in many cities across the U.S.
Elsevier, Sustainable Cities and Society, Volume 27, 1 November 2016
Water reuse networks have been emerging globally for the last 50 years. This article reviews the economic, social and environmental issues related to implementing water reuse networks in cities. This is reflecting the fact that globally many cities are categorised as water scarce areas, where there is growing imbalance between water demand and availability. In this sense, there is a need for sustainable water supply solutions in the imminent future to provide and maintain service reliability, particularly in the face of climate change.
Elsevier, Separation and Purification Technology, Volume 156, 17 December 2015
This short review summarizes our understanding and perspectives on FO and PRO processes and meaningful R&D in order to develop effective and sustainable FO and PRO technologies for water reuse and osmotic power generation.