Water Management

As the Millennium Development Goals did earlier, the Sustainable Development Goals have mobilised the international community into what can be the most important, although the most challenging, development goals of the 21st century. However, a main limitation has been that the SDGs considered as a baseline the inaccurate figures that were presented by the UN at the end of the MDGs. These figures were not challenged, not even by the academic community, who in many cases has used them uncritically.
Living in a harsh, desert climate, Omani rural communities have developed locally-appropriate knowledge to deal with water scarcity. Similar to the qanat, the aflaj taps into the natural water table and uses a gravity system to channel water through underground channels to villages. Traditional techniques of water management, such as the aflaj, represents a way of adapting to and coping with difficult climates which have persisted for millennia. However, knowledge systems have often ‘decayed’ with the onset of modernity.
As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region.
Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. This paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations.
Elsevier, Sustainable Cities and Society, Volume 28, 1 January 2017
Urban water management via Sustainable Urban Drainage Systems (SuDS) has been successfully applied in cities worldwide. This infrastructure has proven to be a cost efficient solution to manage flood risks whilst also delivering wider benefits. Despite their technical performance, large-scale SuDS uptake in many places has been slow, mostly due to reasons beyond the engineering realm. This is the case of England and Wales, where the implementation of SuDS has not reached its full potential.
An international review of stormwater regulation and practices, especially for low-exposure, landscape irrigation schemes in urban environments, was undertaken with a view to identifying what could be used in Alberta, Canada. A general lack of clear guidance and regulation to manage stormwater quality and potential public health risks was identified, which could be hindering the uptake of stormwater schemes generally.
This paper uses ‘Medieval’ drought conditions from the 12th Century to simulate the implications of severe and persistent drought for the future of water resource management in metropolitan Phoenix, one of the largest and fastest growing urban areas in the southwestern USA. WaterSim 5, an anticipatory water policy and planning model, was used to explore groundwater sustainability outcomes for mega-drought conditions across a range of policies, including population growth management, water conservation, water banking, direct reuse of RO reclaimed water, and water augmentation.
Elsevier, Sustainable Cities and Society, Volume 27, 1 November 2016
Water reuse networks have been emerging globally for the last 50 years. This article reviews the economic, social and environmental issues related to implementing water reuse networks in cities. This is reflecting the fact that globally many cities are categorised as water scarce areas, where there is growing imbalance between water demand and availability. In this sense, there is a need for sustainable water supply solutions in the imminent future to provide and maintain service reliability, particularly in the face of climate change.
Models of university-utility collaboration.
In the face of intensifying stresses such as climate change, rapid urban population growth, land use change, and public concern with rates and use restrictions, water management is becoming increasingly complex in the cities of the American West. One strategy to improve water management practices in this changing social-ecological context is to develop collaborative relationships that facilitate the engagement of multiple stakeholders at multiple scales.
Provision of clean water is one of the most important issues worldwide because of continuing economic development and the steady increase in the global population. However, clean water resources are decreasing everyday, because of contamination with various pollutants including organic chemicals. Pharmaceutical and personal care products, herbicides/pesticides, dyes, phenolics, and aromatics (from sources such as spilled oil) are typical organics that should be removed from water.