Water Resources

Cities are wrestling with the practical challenges of transitioning urban water services to become water sensitive; capable of enhancing liveability, sustainability, resilience and productivity in the face of climate change, rapid urbanisation, degraded ecosystems and ageing infrastructure. Indicators can be valuable for guiding actions for improvement, but there is not yet an established index that measures the full suite of attributes that constitute water sensitive performance.
The planetary boundaries framework proposes quantified guardrails to human modification of global environmental processes that regulate the stability of the planet and has been considered in sustainability science, governance, and corporate management. However, the planetary boundary for human freshwater use has been critiqued as a singular measure that does not reflect all types of human interference with the complex global water cycle and Earth System.
The recovery of resources from waste streams including food production plants can improve the overall sustainability of such processes from both economic and environmental points of view. This is because resource recovery solutions will be instrumental in overcoming the grand societal challenges in relation to the Water-Energy-Food (WEF) nexus in one of many aspects.
Despite a major, policy-driven increase in research on the food–energy–water (FEW) nexus in recent years, research addressing the required changes in policy structures and processes for an effective, integrated governance of FEW nexus resources is still in its infancy. This paper adapts the Institutional Analysis and Development Framework to the requirements and challenges of FEW nexus governance and sets a special focus on action situations, actors, and institutions. The analysis thus contributes to the debate about the practicality and benefits of a comprehensive FEW nexus policy approach.
The increase in population coupled with rising per capita income and associated change in consumption habits will put unprecedented stress on food, energy and water (FEW) resources. Sustainable and reliable fresh water supply is central for life and also for all sectors that support our existence. Uncertainty on water security prompted interest in investigation of renewable energy driven desalination processes. One particularly promising option is to produce fresh water from the two most abundant resources on earth: solar energy and seawater.
Elsevier, Climate Risk Management, Volume 16, 2017
The primary objective of this study is to determine what drives states to plan for the impacts of a changing climate. As the climate continues to change, climate scientists have projected changes in water quantities available for human and other uses. This quantitative study examines how state water plans and state hazard mitigation plans address climate change. Plans were coded for the extent to which they address climate change in their calculations regarding future water supply and demand.
The sustainability of water resources depends on the dynamic interactions among the environmental, technological, and social characteristics of the water system and local population. These interactions can cause supply-demand imbalances at diverse temporal scales, and the response of consumers to water use regulations impacts future water availability. This research develops a dynamic modeling approach to simulate supply-demand dynamics using an agent-based modeling framework that couple models of consumers and utility managers with water system models.
The detection of pharmaceuticals and endocrine disrupting compounds (EDCs), known as emerging contaminants (ECs), in the environment has attracted growing concern due to their toxicity and potential hazard to the ecosystems and humans. These contaminants are consumed at high quantities worldwide and they are released deliberately or accidentally into the water resources. The conventional treatment technologies that use biological processes cannot effectively remove these contaminants.
London's ability to remain a world-leading city in an increasingly globalised economy is dependent on it being an efficient, low-risk place to do business and a desirable place to live. However, increasing climate risk from flooding, overheating and water scarcity threatens this, creating the need for adaptation. An adaption pathway describes a structured sequence of adaptation decisions that are designed to manage climate risk in a wide range of possible future conditions.
Models of university-utility collaboration.
In the face of intensifying stresses such as climate change, rapid urban population growth, land use change, and public concern with rates and use restrictions, water management is becoming increasingly complex in the cities of the American West. One strategy to improve water management practices in this changing social-ecological context is to develop collaborative relationships that facilitate the engagement of multiple stakeholders at multiple scales.