Oceans & Seas

Oceans and seas play a vital role in the context of Sustainable Development Goals (SDGs) as they significantly contribute to the Earth's biosphere's health and the global economy. They are critical to sustaining life on earth, acting as a major source of food and oxygen while also serving as natural carbon sinks that mitigate climate change impacts. SDG 14, "Life Below Water," explicitly acknowledges the importance of conservation and the sustainable use of the world's oceans, seas, and marine resources.

Oceans absorb about 30% of carbon dioxide produced by humans, buffering the impacts of global warming. However, this process has implications such as ocean acidification, negatively impacting marine biodiversity and ecosystems. These impacts, coupled with unsustainable fishing practices and pollution, threaten the health of our oceans and seas. SDG 14 sets targets to prevent and reduce marine pollution of all kinds, sustainably manage and protect marine and coastal ecosystems, and regulate harvesting and end overfishing to restore fish stocks to sustainable levels.

Oceans also support economic wellbeing. Over three billion people depend on marine and coastal biodiversity for their livelihoods. By protecting oceanic ecosystems, the SDGs also support SDG 1, "No Poverty," and SDG 8, "Decent Work and Economic Growth." Furthermore, the oceanic routes are critical for global trade, supporting SDG 9, "Industry, Innovation, and Infrastructure."

Furthermore, by implementing strategies for cleaner and more sustainable use of oceans and seas, it can also contribute to SDG 13, "Climate Action." For instance, developing and implementing new technologies to harness energy from waves and tides can promote renewable energy usage and reduce reliance on fossil fuels, aligning with SDG 7, "Affordable and Clean Energy."

Elsevier, TrAC - Trends in Analytical Chemistry, Volume 112, March 2019
Nanoplastic is an emerging topic of relevance in environmental science. The analytical methods for microplastic have a particle size limit of a few micrometers so that new methods have to be developed to cover the nanometer range. This contribution reviews the progress in environmental nanoplastic analysis and critically evaluates which techniques from nanomaterial analysis may potentially be adapted to close the methodological gap. A roadmap is brought forward for the whole analytical process from sample treatment to particle characterization.
The presence of plastic debris in the ocean is increasing and several effects in the marine environment have been reported. A great number of studies have demonstrated that microplastics (MPs) adsorb organic compounds concentrating them several orders of magnitude than the levels found in their surrounding environment, therefore they could be potential vectors of these contaminants to biota. However, a consensus on MPs as vectors of persistent organic pollutants (POPs) has not been reached since are opposing views among different researchers on this topic.
Interest about interactions between microplastics and organisms is on the rise. Accessing organisms’ responses to these chemically “inert” compounds plays an important role in determining their potential toxicity. Microplastics from the environment tend to accumulate and move through living organisms, inducing a variety of biological effects, such as disturbances in energy metabolism, oxidative balance, antioxidative capacity, DNA, immunological, neurological and histological damage.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 111, February 2019
The quantification of micro- and nanoplastics in environmental matrices is an analytical challenge and pushes to the use of unrealistic high exposure concentrations in laboratory studies which can lead to manifestations of ecotoxicological effects and risks estimation that are transient under natural conditions.
Elsevier,

Encyclopedia of Ocean Sciences, Volume 6, 1 January 2019

This book chapter advances SDGs 11 and 12 by discussing the integrated coastal management approach to coastal zone management policy for a sustainable coast.
In the last decades, energy scarcity has become an important issue globally. Renewable energy sources have gained importance due to limited fossil fuel reserves and increased concerns on climate change. In this regard, municipal wastewater is a remarkable energy source since huge amounts of wastewater are generated and treated all over the world every day. Conventional activated sludge (CAS) process, which has been in use for more than a century, is the most widely applied treatment method for municipal wastewater.
Elsevier, Trends in Ecology and Evolution, Volume 34, January 2019
Global biodiversity targets have far-reaching implications for nature conservation worldwide. Scenarios and models hold unfulfilled promise for ensuring such targets are well founded and implemented; here, we review how they can and should inform the Aichi Targets of the Strategic Plan for Biodiversity and their reformulation. They offer two clear benefits: providing a scientific basis for the wording and quantitative elements of targets; and identifying synergies and trade-offs by accounting for interactions between targets and the actions needed to achieve them.
The current regime governing Areas Beyond National Jurisdiction (ABNJ) as a global commons has resulted in overutilization of fisheries resources and patchwork attempts to regulate resource extraction. States are looking to expand resource extraction in ABNJs, including marine genetic resources, creating pressures to regulate these activities. As a result, since 2004, the United Nations has been holding preparatory meetings to lay the groundwork for a new international legally binding instrument (ILBI) to address the gaps left by UNCLOS.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 110, January 2019
Microplastics are widespread contaminants, virtually present in all environmental compartments. However, knowledge on sources, fate and environmental concentration over time and space still is limited due to the laborious and varied analytical procedures currently used. In this work we critically review the methods currently used for sampling and detection of microplastics, identifying flaws in study design and suggesting promising alternatives.

Pages