Effects of levothyroxine on lung inflammation, oxidative stress and pathology in a rat model of Alzheimer's disease

Elsevier, Respiratory Physiology and Neurobiology, Volume 277, June 2020
Bavarsad K., Saadat S., Mohammadian Roshan N., Hadjzadeh M.-A.-R., Boskabady M.H.

Background: In this study, the effect of levothyroxine (L-T4) on tracheal responsiveness, lung inflammation, oxidative stress and pathological features in a rat model of Alzheimer's disease (AD), was evaluated. Methods: An animal model of AD was established by intracerebroventricular injection of streptozotocin (STZ) (3 mg/kg) in rats. The rats were then treated for 3 weeks with L-T4 (10 and 100 μg/kg). Results: In AD animals, tracheal responsiveness to methacholine and ovalbumin (p < 0.05), white blood cell (WBC) count (p < 0.05 to p < 0.01), malondialdehyde (MDA) concentration (p < 0.05) and inflammation score (p < 0.01) were increased, but superoxide dismutase (SOD) activity and total thiol content (for both cases p < 0.05) were decreased compared to the controls. Tracheal responsiveness to methacholine and MDA concentration (p < 0.05) were decreased in AD animals treated with T4 compared to the AD group. Bronchial inflammation in terms of total and some differential WBC in the BALF and inflammatory score, was significantly worsened in AD animals treated with high dose of T4 (p < 0.05 to p < 0.001) compared to the controls. Conclusion: Alzheimer's disease may cause lung inflammation and treatment with low dose of T4 improved MDA level and lung inflammation.