The PV-Researcher's Siren: Hybrid metal halide perovskites

Elsevier, Current Opinion in Green and Sustainable Chemistry, Volume 4, 1 April 2017
Unger E.L.
Metal-halide perovskite semiconductors are certainly one of the hottest topic in solar energy conversion. Optimization of both the absorber material and device architecture has led to an astoundingly rapid increase in the reported device efficiencies. Initially developed in the context of dye-sensitized solar cell research, metal-halide perovskite devices now reach efficiency values and hence need to be compared to more conventional photovoltaic technologies such as silicon, copper indium gallium diselenide and cadmium telluride. Strong direct band gap absorption, long charge carrier diffusion length, ease and flexibility in processing at low temperatures and facile tunability makes these materials ideal for solar energy conversion applications. This review will both reflect on favorable properties of these hybrid and ionic semiconductors as well as reflecting on lead toxicity, material and device stability as the most critical issues that need to be solved in order for these materials to become technologically viable.