
Elsevier, Signal Processing, Volume 190, January 2022
Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on ground crew inspection, have several limits and can expose firefighters’ lives to danger. Thus, remote sensing technologies have become one of the most demanded strategies to fight against wildfires, especially UAV-based remote sensing technologies. They have been adopted to detect forest fires at their early stages, before becoming uncontrollable. Autonomous wildfire early detection from UAV-based visual data using different deep learning algorithms has attracted significant interest in the last few years. To this end, in this paper, we focused on wildfires detection at their early stages in forest and wildland areas, using deep learning-based computer vision algorithms to prevent and then reduce disastrous losses in terms of human lives and forest resources.
Category:
Keywords:
Aerial Image Processing; Aerial Images Processing; Aircraft Detection; Antennas; Computer Vision; Computer Vision Algorithms; Deep Learning; Deforestation; Detection System; Disasters; Early Wildfire Detections; Fires; Forest Resources; Learning Algorithms; Remote Sensing; Remote Sensing Technology; Smoke; Smoke Detection System; Smoke Detection Systems; Unmanned Aerial Vehicle; Unmanned Aerial Vehicles (UAV); Wildfire Detection; Wildfire Detection System; Global