Widespread alterations to hypothalamic-pituitary-gonadal (HPG) axis signaling underlie high temperature reproductive inhibition in the eurythermal sheepshead minnow (Cyprinodon variegatus)

Elsevier, Molecular and Cellular Endocrinology, Volume 537, 1 November 2021
Bock S.L., Chow M.I., Forsgren K.L., Lema S.C.
Fish experiencing abnormally high or prolonged elevations in temperature can exhibit impaired reproduction, even for species adapted to warm water environments. Such high temperature inhibition of reproduction has been linked to diminished gonadal steroidogenesis, but the mechanisms whereby hypothalamic-pituitary-gonadal (HPG) axis signaling is impacted by high temperature are not fully understood. Here, we characterized differences in HPG status in adult sheepshead minnow (Cyprinodon variegatus), a eurythermal salt marsh and estuarine species of eastern North America, exposed for 14 d to temperatures of 27 °C or 37 °C. Males and females at 37 °C had lower gonadosomatic index (GSI) values compared to fish at 27 °C, and females at 37 °C had fewer spawning capable eggs and lower circulating 17β-estradiol (E2). Gene transcripts encoding gonadotropin-inhibitory hormone (gnih) and gonadotropin-releasing hormone-3 (gnrh3) were higher in relative abundance in the hypothalamus of both sexes at 37 °C. While pituitary mRNAs for the β-subunits of follicle-stimulating hormone (fshβ) and luteinizing hormone (lhβ) were lowered only in males at 37 °C, Fsh and Lh receptor mRNA levels in the gonads were at lower relative levels in both the ovary and testis of fish at 37 °C. Females at 37 °C also showed reduced ovarian mRNA levels for steroid acute regulatory protein (star), P450 side-chain cleavage enzyme (cyp11a1), 3β-hydroxysteroid dehydrogenase (3βhsd), 17β-hydroxysteroid dehydrogenase (hsd17β3), and ovarian aromatase (cyp19a1a). Females at the higher 37 °C temperature also had a lower liver expression of mRNAs encoding estrogen receptor α (esr1) and several vitellogenin and choriogenin genes, but elevated mRNA levels for hepatic sex hormone-binding globulin (shbg). Our results substantiate prior findings that exposure of fish to high temperature can inhibit gonadal steroidogenesis and oogenesis, and point to declines in reproductive performance emerging from alterations at several levels of HPG axis signaling including increased hypothalamic Gnih expression, depressed gonadal steroidogenesis, and reduced egg yolk and egg envelope protein production in the liver.