Benefits of resource strategy for sustainable materials research and development

Elsevier, Sustainable Materials and Technologies, Volume 12, 1 July 2017
Helbig C., Kolotzek C., Thorenz A., Reller A., Tuma A., Schafnitzel M. et al.
Material and product life cycles are based on complex value chains of technology-specific elements. Resource strategy aspects of essential and strategic raw materials have a direct impact on applications of new functionalized materials or the development of novel products. Thus, an urgent challenge of modern materials science is to obtain information about the supply risk and environmental aspects of resource utilization, especially at an early stage of basic research. Combining the fields of materials science, industrial engineering and resource strategy enables a multidisciplinary research approach to identify specific risks within the value chain, aggregated as the so-called ‘resource criticality’. Here, we demonstrate a step-by-step criticality assessment in the sector of basic materials research for multifunctional hexagonal manganite YMnO3, which can be a candidate for future electronic systems. Raw material restrictions can be quantitatively identified, even at such an early stage of materials research, from eleven long-term indicators including our new developed Sector Competition Index. This approach for resource strategy for modern material science integrates two objective targets: reduced supply risk and enhanced environmental sustainability of new functionalized materials, showing drawbacks but also benefits towards a sustainable materials research and development.