A new simple method to design control limits is proposed, based on maintaining the original characteristics of the chart as devised by Shewhart.

Elsevier, Heliyon, Volume 9, Issue 3, March 2023, e13654
Vanina Pasqualini, Marie Garrido, Philippe Cecchi, Coralie Connès, Alain Couté, Maria El Rakwe, Maryvonne Henry, Dominique Hervio-Heath, Yann Quilichini, Jérémy Simonnet i, Emmanuel Rinnert, Thomas Vitré, François Galgani

Plastic is now a pervasive pollutant in all marine ecosystems. The microplastics and macroplastic debris were studied in three French Mediterranean coastal lagoons (Prevost, Biguglia and Diana lagoons), displaying different environmental characteristics. In addition, biofilm samples were analyzed over the seasons to quantify and identify microalgae communities colonizing macroplastics, and determine potentially harmful microorganisms. Results indicate low but highly variable concentrations of microplastics, in relation to the period and location of sampling. Micro-Raman spectroscopy analyses revealed that the majority of macroplastic debris corresponded to polyethylene (PE) and low-density polyethylene (LDPE), and to a far lesser extent to polypropylene (PP). The observations by Scanning Electron Microscopy of microalgae communities colonizing macroplastic debris demonstrated differences depending on the seasons, with higher amounts in spring and summer, but without any variation between lagoons and polymers. Among the Diatomophyceae, the most dominant genera were Amphora spp., Cocconeis spp., and Navicula spp.. Cyanobacteria and Dinophyceae such as Prorocentrum cordatum, a potentially toxic species, were also found sporadically. The use of Primer specific DNA amplification tools enabled us to detect potentially harmful microorganisms colonizing plastics, such as Alexandrium minutum or Vibrio spp. An additional in situ experiment performed over one year revealed an increase in the diversity of colonizing microalgae in relation to the duration of immersion for the three tested polymers PE, LDPE and polyethylene terephthalates (PET). Vibrio settled durably after two weeks of immersion, whatever the polymer. This study confirms that Mediterranean coastal lagoons are vulnerable to the presence of macroplastic debris that may passively host and transport various species, including some potentially harmful algal and bacterial microorganisms.