Critical Raw Materials

Elsevier, Sustainable Materials and Technologies, February 2018

Increasing consumption and demand for special and precious metals brings about associated risks if the supply chain is disrupted or constrained. These articles considers the ecological and social impacts of raw materials supply chain contributing to SDG 12 (responsible consumption and production).

Elsevier, Sustainable Materials and Technologies, Volume 15, April 2018
According to the reports on critical raw materials for the EU, a raw material is considered critical if it has a high economic importance to the EU combined with high supply risk. Supply risk is considered to arise from a combination of several factors, namely a high concentration of production in countries with poor governance, limited material substitutability, and poor end-of-life recycling rates. A number of industry activities, policy initiatives and research projects have recently been initiated in Europe with the aim to secure an adequate supply of raw materials.
Elsevier, Sustainable Materials and Technologies, Volume 15, April 2018
Over the past decade, raw material price spikes have called attention to the supply security of a variety of critical materials, including rhenium, rare earth elements, and helium. While market forces play an important role in creating and resolving these situations, transitions in technology also create step-changes in demand that increase or decrease the criticality of different materials. With an appropriate understanding of how materials are used in various applications, it is possible to explore the critical materials implications associated with the introduction of new technologies.
Elsevier, Sustainable Materials and Technologies, Volume 15, April 2018
As the technologies we use as a society have advanced, so have the materials used in these technologies. Some of these materials are exotic and highly specialized, making them particularly vulnerable to supply disruptions and supply disruptions particularly impactful. Such materials are designated as “critical” materials. Their level of criticality can be identified by accounting for a number of factors related to their supply risk and the extent to which a supply disruption would impact business operations or society at large.
Elsevier, Sustainable Materials and Technologies, Volume 16, July 2018
This paper contributes to the understanding of metal demand development over time by illustrating the impacts of different aspects of technological change using historical data. We provide a direct, quantitative comparison of relative change in global primary production for 30 metals over 21 years (1993–2013), capturing the range and variation of demand development for different metals within this period. The aspects of technological change contributing to this variation are investigated in more depth for nine metals.
Elsevier, Sustainable Materials and Technologies, Volume 12, 1 July 2017
Material and product life cycles are based on complex value chains of technology-specific elements. Resource strategy aspects of essential and strategic raw materials have a direct impact on applications of new functionalized materials or the development of novel products. Thus, an urgent challenge of modern materials science is to obtain information about the supply risk and environmental aspects of resource utilization, especially at an early stage of basic research.