Energy

Energy is a central component of the United Nations' Sustainable Development Goals (SDGs), explicitly reflected in SDG 7: Affordable and Clean Energy. However, the theme of energy cuts across multiple SDGs, demonstrating the interconnectivity of these global goals.

SDG 7's objective is to ensure access to affordable, reliable, sustainable, and modern energy for all. Energy, in its various forms, is a vital driver of economic growth and is pivotal to nearly all aspects of development. Without a steady and reliable supply of energy, societies can hardly progress. However, millions of people around the world still lack access to modern and clean energy services. The emphasis on "affordable and clean" energy within this goal shows the need to transition from traditional energy sources, often characterized by high environmental costs, to more sustainable ones like wind, solar, and hydropower.

Energy's role is also significant in achieving other SDGs. For example, SDG 9: Industry, Innovation, and Infrastructure, emphasizes the need for sustainable and resilient infrastructure with increased resource-use efficiency and greater adoption of clean technologies. It is almost impossible to achieve this without a sustainable energy framework. Similarly, SDG 11: Sustainable Cities and Communities, calls for making cities inclusive, safe, resilient, and sustainable, and one of its targets (11.6) directly refers to the environmental impact of cities, for which energy is a key factor.

Furthermore, energy is a crucial player in SDG 13: Climate Action. The energy sector represents the largest single source of global greenhouse gas emissions. Transitioning to a sustainable energy future, therefore, is critical for tackling climate change. Efforts to reduce emissions and promote clean energy sources are crucial to mitigate climate change and its impacts.

Based on literature and six country studies (Belgium, Denmark, Finland, Netherlands, Sweden, Slovakia) this paper discusses the compatibility of the EU 2020 targets for renewable energy with conservation of biodiversity.We conclude that increased demand for biomass for bioenergy purposes may lead to a continued conversion of valuable habitats into productive lands and to intensification, which both have negative effects on biodiversity.
Wood residues from forest harvesting or disturbance wood from wildfire and insect outbreaks may be viewed as biomass "feedstocks" for bioenergy production, to help reduce our dependence on fossil fuels. Biomass removals of woody debris may have potential impacts on forest biodiversity and ecosystem function. Forest-floor small mammals, such as the southern red-backed vole (Myodes gapperi) that typically disappear after clearcut harvesting, may serve as ecological indicators of significant change in forest structure and function.

What is the best strategy to encourage research and development on new energy technologies in a market economy? What steps can ensure a rapid and efficient transition to an economy that has much lower net carbon emissions? This paper shows that, under limited conditions, a necessary and sufficient condition for an appropriate innovational environment is a universal, credible, and durable price on carbon emissions.

This paper describes the methodology and data used to determine greenhouse gas (GHG) emissions attributable to ten cities or city-regions: Los Angeles County, Denver City and County, Greater Toronto, New York City, Greater London, Geneva Canton, Greater Prague, Barcelona, Cape Town and Bangkok. Equations for determining emissions are developed for contributions from: electricity; heating and industrial fuels; ground transportation fuels; air and marine fuels; industrial processes; and waste.

Pages