Energy

Energy is a central component of the United Nations' Sustainable Development Goals (SDGs), explicitly reflected in SDG 7: Affordable and Clean Energy. However, the theme of energy cuts across multiple SDGs, demonstrating the interconnectivity of these global goals.

SDG 7's objective is to ensure access to affordable, reliable, sustainable, and modern energy for all. Energy, in its various forms, is a vital driver of economic growth and is pivotal to nearly all aspects of development. Without a steady and reliable supply of energy, societies can hardly progress. However, millions of people around the world still lack access to modern and clean energy services. The emphasis on "affordable and clean" energy within this goal shows the need to transition from traditional energy sources, often characterized by high environmental costs, to more sustainable ones like wind, solar, and hydropower.

Energy's role is also significant in achieving other SDGs. For example, SDG 9: Industry, Innovation, and Infrastructure, emphasizes the need for sustainable and resilient infrastructure with increased resource-use efficiency and greater adoption of clean technologies. It is almost impossible to achieve this without a sustainable energy framework. Similarly, SDG 11: Sustainable Cities and Communities, calls for making cities inclusive, safe, resilient, and sustainable, and one of its targets (11.6) directly refers to the environmental impact of cities, for which energy is a key factor.

Furthermore, energy is a crucial player in SDG 13: Climate Action. The energy sector represents the largest single source of global greenhouse gas emissions. Transitioning to a sustainable energy future, therefore, is critical for tackling climate change. Efforts to reduce emissions and promote clean energy sources are crucial to mitigate climate change and its impacts.

Elsevier,

Sustainable Cities and Society, Volume 28, 1 January 2017

This paper discusses the CO2 footprint of California's drought during 2012–2014. We show that California drought significantly increased CO2 emissions of the energy sector by around 22 million metric tons, indicating 33% increase in the annual CO2 emissions compared to pre-drought conditions. We argue that CO2 emission of climate extremes deserve more attention, because their cumulative impacts on CO2 emissions are staggering. Most countries, including the United States, do not have a comprehensive a nationwide energy-water plan to minimize their CO2 emissions.

The efficient utilization of clean energy resources to meet increasing electricity demand is imposing the integration of the electricity market and the construction of secure transmission mechanisms around the globe. Accordingly, the Association of Southeast Asian Nations (ASEAN) is integrating its large geographical power transmission infrastructure via the ASEAN power grid (APG). This study extensively reviews the energy resources (i.e., fossil fuels and renewables), the current utilization, and the future projection for ASEAN.

Elsevier,

Renewable and Sustainable Energy Reviews, Volume 71, 2017

In this paper, five most emerging renewable energy sources are analyzed. These emerging renewables are either special or advanced forms of the mainstream energy sources (solar, wind, geothermal, biofuels, biomass, and hydro) or brand new technologies. The five emerging renewable technologies discussed in this paper include marine energy, concentrated solar photovoltaics (CSP), enhanced geothermal energy (EGE), cellulosic ethanol, and artificial photosynthesis.

Elsevier,

Solar Energy Desalination Technology, Chapter 1, 2017, Pages 1–46

To advance goal 6 (clean water and sanitation), this chapter explores different desalination processes to make seawater drinkable, which is an obvious solution to any water shortages. Given the high-polluting energy required in the desalination process, solar-desalination technologies is considered.
Elsevier,

Sustainable Shale Oil and Gas, Chapter 3, 2017, Pages 29–43

This chapter advances SDGs 7 and 13 by discussing detection methods for fugitive methane and whether these gases can be captured and used for commercial opportunity.
The Blueprint for Business Leadership on the SDGs aims to inspire all business — regardless of size, sector or geography — to take leading action in support of the achievement of the Sustainable Development Goals (SDGs). It illustrates how the five leadership qualities of Ambition, Collaboration, Accountability, Consistency, and Intentional can be applied to a business' strategy, business model, products, supply chain, partnerships, and operations to raise the bar and create impact at scale. The Blueprint is a tool for any business that is ready to advance its principled approach to SDG action to become a leader. This chapter relates specifically to SDG 7.
[Figure presented]Profs. Nik Kaltsoyannis and Steve Liddle joined the University of Manchester School of Chemistry in 2015 as co-directors of the Centre for Radiochemistry Research after having previously held chairs at, respectively, University College London and the University of Nottingham. They are also heads of computational and inorganic chemistry, respectively. Each has published ∼150 research articles, reviews, and book chapters and has extensive experience in f-element chemistry. Prof.
Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions.
Elsevier, Social Science and Medicine, Volume 167, 1 October 2016
Energy insecurity is a multi-dimensional construct that describes the interplay between physical conditions of housing, household energy expenditures and energy-related coping strategies. The present study uses an adapted grounded theory approach based on in-depth interviews with 72 low-income families to advance the concept of energy insecurity. Study results illustrate the layered components of energy insecurity by providing rich and nuanced narratives of the lived experiences of affected households.

[Figure presented] Leif Hammarström is a professor of chemical physics at Uppsala University, Sweden. He is one of the leaders of the Swedish Consortium for Artificial Photosynthesis, founded in the mid-1990s. He is chair of the Swedish Solar Energy Platform and represents Uppsala University as a core member of the Solar Fuels Institute.

Pages