Global

Elsevier, Current Opinion in Environmental Sustainability, Volume 38, June 2019
A growing movement of conservationists proposes to stem biodiversity losses by setting aside half of Earth's land as an interconnected global conservation reserve. As the largest land governance proposal in history, Half Earth engages with some of the wickedest challenges in land system science. How best to allocate and manage Earth's land to maximize biodiversity conservation in the face of competing demands for food, housing and other human needs? Can half of Earth's land be reallocated and governed fairly and equitably in ways that honor the rights of vulnerable populations?
Insect populations are declining even in protected areas, but the underlying causes are unclear. Here, I consider whether the factors driving the loss of insect diversity include invasive and/or introduced insects transmitting pathogens to less-resistant native species. The introduction of insects into new areas for biocontrol, to promote pollination, or for mass rearing in insect farms, threatens the health and diversity of indigenous insects by the co-introduction of entomopathogens whose spillover is difficult to control.
Rising demand for renewable resources has increased silage maize (Zea mays L.)production characterized by intensive soil management, high fertilizer and pesticide inputs as well as simplified crop rotations. Advantages of renewable biomass production may thus be cancelled out by adverse environmental effects. Perennial crops, like cup plant (Silphium perfoliatum L.), are said to benefit arthropods. Substituting silage maize could hence increase biodiversity and foster ecosystem services.
Elsevier, Molecular and Cellular Neuroscience, Volume 97, June 2019
The aggregation of fibrils of hyperphosphorylated and C-terminally truncated microtubule-associated tau protein characterizes 80% of all dementia disorders, the most common neurodegenerative disorders. These so-called tauopathies are hitherto not curable and their diagnosis, especially at early disease stages, has traditionally proven difficult. A keystone in the diagnosis of tauopathies was the development of methods to assess levels of tau protein in vivo in cerebrospinal fluid, which has significantly improved our knowledge about these conditions.
Alzheimer's disease (AD) is the most common form of dementia and it is characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. However, the complete pathogenesis of the disease is still unknown. High level of serum cholesterol has been found to positively correlate with an increased risk of dementia and some studies have reported a decreased prevalence of AD in patients taking cholesterol-lowering drugs.
Background: Memory for music has attracted much recent interest in Alzheimer's disease but the underlying brain mechanisms have not been defined in patients directly. Here we addressed this issue in an Alzheimer's disease cohort using activation fMRI of two core musical memory systems. Methods: We studied 34 patients with younger onset Alzheimer's disease led either by episodic memory decline (typical Alzheimer's disease)or by visuospatial impairment (posterior cortical atrophy)in relation to 19 age-matched healthy individuals.
Microglia play a key role in innate immunity in Alzheimer disease (AD), but their role as antigen-presenting cells is as yet unclear. Here we found that amyloid β peptide (Aβ)-specific T helper 1 (Aβ-Th1 cells) T cells polarized to secrete interferon-γ and intracerebroventricularly (ICV) injected to the 5XFAD mouse model of AD induced the differentiation of major histocompatibility complex class II (MHCII)+ microglia with distinct morphology and enhanced plaque clearance capacity than MHCII− microglia.
Elsevier,

World Development, Volume 118, June 2019

Globally, industrial agriculture threatens critical ecosystem processes on which crop production depends, while 815 million people are undernourished and many more suffer from malnutrition. The second Sustainable Development Goal (SDG 2), Zero Hunger, seeks to simultaneously address global environmental sustainability and food security challenges. We conducted an integrated literature review organized around three disciplinary perspectives central to realizing SDG 2: ecology and agricultural sciences, nutrition and public health, and political economy and policy science.

This Special Issue, bringing together articles from Science of the Total Environment; Renewable and Sustainable Energy Reviews; Ecological Modelling, and Resources; Conservation and Recycling, highlights the increasing understanding that major systems servicing human well-being, food, energy and water (FEW) systems are inextricably connected, and any attempt to address one dimension in isolation of the others will lead to unexpected, undesired, and far from optimal consequences. Considering these three systems holistically as the Food-Energy-Water Nexus directly considers Sustainable Development Goals 2 (zero hunger), 6 (clean water and sanitation), 7 (affordable and clean energy), 9 (industry, innovation and infrastructure), and 12 (responsible consumption and production).
This book chapter supports SDGS by presenting a psychodynamically informed treatment for trauma-related disorders that has proven efficacious in treating refugees as well as traumatized clients in postconflict settings.

Pages