Biodiversity and ecosystems

Biodiversity and ecosystems, encompassing the vast variety of life on Earth and the natural systems they inhabit, are fundamental to the Sustainable Development Goals (SDGs). Their importance is acknowledged explicitly in several SDGs due to their critical role in maintaining environmental balance and supporting human life and well-being.

SDG 14 (Life Below Water) and SDG 15 (Life on Land) are directly focused on the conservation and sustainable use of aquatic and terrestrial ecosystems, respectively. These goals recognize the intrinsic value of biodiversity and the vital services ecosystems provide, such as habitat for wildlife, carbon sequestration, and soil formation. The preservation and restoration of ecosystems like forests, wetlands, and coral reefs are essential for maintaining biodiversity, which in turn supports ecological resilience and the sustenance of human life.

The role of biodiversity and ecosystems in achieving SDG 2 (Zero Hunger) is significant. The variety of life forms, including plants, animals, and microorganisms, underpins agricultural productivity. Pollinators, soil organisms, and genetic diversity of crops are all crucial for food production and agricultural resilience. Ecosystems support agriculture not just in terms of crop yield but also in sustaining the natural resources like soil and water, upon which agriculture depends.

Similarly, SDG 6 (Clean Water and Sanitation) is closely tied to the health of ecosystems. Natural habitats such as forests and wetlands play a key role in filtering and purifying water, maintaining the water cycle, and regulating water flow. This natural filtration process is vital for providing clean drinking water and supporting sanitation systems.

Biodiversity and ecosystems are also crucial for SDG 3 (Good Health and Well-being). Natural environments regulate diseases by supporting a balance among species that, in turn, can control pest and disease outbreaks. Additionally, a vast number of medical discoveries, including medicines and treatments, have their origins in biological resources, underscoring the potential of biodiversity in contributing to human health and well-being.

Moreover, biodiversity and ecosystems play a significant role in addressing climate change, linking to SDG 13 (Climate Action). Ecosystems such as forests and oceans are major carbon sinks, absorbing and storing carbon dioxide from the atmosphere. Protecting and restoring these ecosystems are vital strategies for climate change mitigation. Additionally, healthy ecosystems provide crucial services for climate change adaptation, such as protecting against extreme weather events and helping communities adjust to changing environmental conditions.

However, achieving these goals requires addressing threats to biodiversity and ecosystems, such as habitat destruction, pollution, overfishing, and invasive species. It also involves balancing the needs of human development with environmental conservation, ensuring sustainable use of natural resources.

Biodiversity and ecosystems are integral to achieving multiple SDGs. Their conservation and sustainable use not only benefit the environment but are essential for food security, water purity, human health, and combating climate change. The protection and restoration of biodiversity and ecosystems are therefore crucial steps towards sustainable development and ensuring the well-being of current and future generations.

A critical question in the conservation of large mammals in the Anthropocene is to know the extent to which they can tolerate human disturbance. Surprisingly, little quantitative data is available about large-scale effects of human activity and land use on their broad scale distribution in Europe. In this study, we quantify the relative importance of human land use and protected areas as opposed to biophysical constraints on large mammal distribution.
Deforestation in Ituna/Itatá Indigenous Land increased 654% between 2018 and 2019. 94% of Ituna/Itatá has been claimed in the Brazilian Rural Environmental Registry. Belo Monte dam and Belo Sun mining project cause land speculation in Ituna/Itatá. Brazilian government policies threaten forest protection and indigenous peoples. Unilateral land tenure regulation would obstruct Indigenous Lands demarcation.
Elsevier,

The Lancet Microbe, Volume 2, Issue 9, 2021, Page e415,

This Editorial highlights the relationship between climate change, fires, floods and infectious diseases.

Why is polyandry such a common mating behaviour when it exposes females to a range of significant fitness costs? Here, we investigated whether polyandry protects females against reduced male fertility caused by thermal stress from heatwave conditions. Sperm production and function are vulnerable to heat, and heatwave conditions are forecast to increase as our climate warms, so we examined these effects on female reproduction and mating behaviour in the flour beetle, Tribolium castaneum, a promiscuous ectotherm model in which fertility is damaged by environmental warming.

Elsevier,

Freshwater Fishes of the Eastern Himalayas, 2021, pp 1-13

This content aligns with Goal 14: Life under Water by emphasizing the significance of freshwater habitats as repositories of aquatic biodiversity.
This chapter aligns with Goal 14: Life Below Water and Goal 13: Climate Action by discussing the impacts of ocean acidification on marine biological processes and highlighting future research directions to understand and preserve marine biodiversity.
Wetlands provide ∼$47.4 trillion/year worth of ecosystem services globally and support immense biodiversity, yet face widespread drainage and pollution, and large-scale wetlands restoration is urgently needed. Payment for ecosystem service (PES) schemes provide a viable avenue for funding large-scale wetland restoration. However, schemes around the globe differ substantially in their goals, structure, challenges, and effectiveness in supporting large-scale wetland restoration.
Elsevier, Current Opinion in Green and Sustainable Chemistry, Volume 29, June 2021
This review is dedicated to ecocatalysis, a concept developed by the Grison group aiming at combining ecology and green chemistry, which could be the vector of sustainable development based on the principle of circular economy. Within this objective, the Grison group has relied on using remediation phytotechnologies, such as phytoextraction, rhizofiltration, and biosorption. These solutions inspired by Nature generate a novel type of biomass, which has become a source of innovation in catalytic chemistry, called ecocatalysis.
The negative effects of slow onset events (SOEs) related to climate change are already affecting developing countries, with the resulting impacts likely to increase significantly. With an increasing urgency to act on SOEs, this paper systematically reviewed and synthesized literature on SOEs in Southeast Asia (SEA), which is a region of several highly climate vulnerable countries.
Many studies have assessed the concept of geodiversity. Most studies have focused on large spatial scales, ranging from watersheds to landscapes. Recent studies from the Israeli drylands indicate that shrubs and trees growing in low-geodiversity sites experience mass mortality following long-term droughts, whilst those in high-geodiversity sites demonstrate high durability. Our objective was to review the relevance of small-scale geodiversity to the slow onset effects of climate change defined by the UN-FCCC, including land and forest degradation, biodiversity loss, and desertification.

Pages