Handbook of Clinical Neurology, vol 184 - Chapter 31: Alzheimer disease and neuroplasticity

Elsevier, Handbook of Clinical Neurology, Volume 184, January 2022
Koch G., Spampinato D.

Alzheimer's disease (AD) is considered the most harmful form of dementia in the elderly population. At present, there are no effective treatments and this is likely due to the incomplete understanding of the pathophysiology. Recent data indicate that synaptic dysfunction could be a central element of AD pathophysiology. It was found that a synaptic breakdown is an early event that heralds neuronal degeneration. Transcranial magnetic stimulation (TMS) has been recently introduced as a novel approach to identify the early signatures of synaptic dysfunction characterizing AD pathophysiology. In this chapter, we review the new neurophysiologic signatures of AD that have been emphasized by TMS studies. We show how TMS measurement of neuroplasticity identified long-term potentiation (LTP)-like cortical plasticity as a key element of AD synaptic dysfunction. These measurements are useful to increase the accuracy of differential diagnosis, predict disease progression, and anticipate response to therapy. Moreover, enhancing neuroplasticity holds as a promising therapeutic approach to improve cognition in AD. In recent years, studies showed treatments with multiple sessions of rTMS can influence cognition in people with neurodegenerative diseases. In the second part of this chapter, we also consider novel therapeutic approaches based on the clinical use of rTMS.