Food security and nutrition and sustainable agriculture

Food security, nutrition, and sustainable agriculture constitute fundamental elements that contribute significantly to the attainment of the United Nations' Sustainable Development Goals (SDGs). These goals are a globally shared blueprint that calls for peace and prosperity for all people and the planet. Focusing on food security and nutrition is directly linked to SDG 2 which seeks to "End hunger, achieve food security and improved nutrition, and promote sustainable agriculture." Beyond SDG 2, these themes also relate to other SDGs such as Goal 3 - Good Health and Well-being, Goal 12 - Responsible Consumption and Production, and Goal 13 - Climate Action. The relationship between sustainable agriculture and these goals is profound; by promoting eco-friendly farming methods, we reduce the environmental footprint, mitigate climate change, and ensure the long-term sustainability of food production systems.

Moreover, sustainable agriculture is vital in fostering biodiversity, improving soil health, and enhancing water use efficiency, which are critical aspects related to Goals 14 and 15 - Life below Water and Life on Land respectively. By safeguarding our ecosystems, we not only ensure food security but also the preservation of the natural environment for future generations. In turn, better nutrition is a conduit to improved health (SDG 3), and it can also influence educational outcomes (SDG 4), given the known links between nutrition and cognitive development.

Furthermore, it is worth noting that the interconnections go beyond these goals. There's an important nexus between sustainable agriculture, food security and issues of poverty (SDG 1), gender equality (SDG 5), clean water and sanitation (SDG 6), and economic growth (SDG 8), among others. Sustainable agriculture creates job opportunities, thus reducing poverty levels. By empowering women in agriculture, we can help achieve gender equality. Proper water and sanitation practices in agriculture can prevent contamination, ensuring clean water and sanitation for all. Therefore, the triad of food security, nutrition, and sustainable agriculture, while being a significant goal in itself, is also a vehicle that drives the achievement of the wider Sustainable Development Goals.

Improvements in the effectiveness of packaging materials can help to prevent foodborne pathogens and reduce environmental waste. Traditionally, food is packaged in plastic that is rarely recyclable, negatively impacting the environment. Biodegradable packaging materials play an important role in maintaining the health of ecosystems. However, there are limitations in the utilization of bio-based materials, including poor barrier and mechanical properties which frequently cause a shorter shelf life compared to conventional food packaging materials.
Elsevier, Current Opinion in Food Science, Volume 32, April 2020
Driven by current climate discussions, the search for alternatives to animal proteins has been intensified in recent years. Although soy and wheat proteins have long had an important share of the protein market, other protein ingredients are gradually becoming available for food purposes. This review provides a concise overview of publications (mainly from the past two years) dealing with alternative protein sources from plants and fungi, along with their nutritional, physico-chemical and sensory characteristics.
Elsevier,

Food Safety and Quality Systems in Developing Countries, Volume III: Technical and Market Considerations, 2020, Pages 1-40

This book chapter addresses SDGs 2 and 10 by explaining how to implement food safety and quality systems in developing countries.
As climate impacts farming, so does farming impact climate change. Identifying best-practices that optimise food security while protecting the environment is a key to sustainable food security. This chapter contributes to SDGs 2, 3 and 12.
Elsevier, Trends in Food Science and Technology, Volume 97, March 2020
Background: Cultured meat has emerged as a breakthrough technology for the global food industry, which was considered as a potential solution to mitigate serious environmental, sustainability, global public health, and animal welfare concerns in the near future. Although there is promise that cultured meat can supplement or even replace conventional meat, many challenges still need to be resolved in the early stages.
Food exchange between human populations can mitigate the risk arising from variable food production. Networks of exchange vary according to context but tend to fall into a relatively small number of qualitatively different types, including altruism, reciprocity, and resource pooling. This apparent canalization raises the question of whether specific networks of food exchange exhibit features that allow them to persist in the longer term, and we address this question by using a model of food exchange among multiple populations.
In the last decade, the consumption trend of organic food has increased dramatically worldwide. Since only a few pesticides are authorized in organic crops, concentrations are expected to range at zero or ultra-trace levels. In this context, the aim of the present study was to investigate the need for an improvement in the residue controls at very low concentrations (

A grand challenge facing humanity is how to produce food for a growing population in the face of a changing climate and environmental degradation. Although empirical evidence remains sparse, management strategies that increase environmental sustainability, such as increasing agroecosystem diversity through crop rotations, may also increase resilience to weather extremes without sacrificing yields.

Increased demand for food to feed the ever-growing population led to development and adoption of synthetic chemicals as a quick and effective strategy of managing crop pests and diseases. However, overreliance on synthetic pesticides is discouraged due to their detrimental effects on human health, the environment, and development of resistant pest and pathogen strains. This, coupled with increasing demand for organically produced foods, stimulated search for alternative approaches and botanical pesticides are particularly gaining importance.

This book chapter advances SDGs 15 and 12 by studying plant–soil interactions in mine degraded reclaimed land which provides an important foundation for restoration ecology.

Pages