Sustainable consumption and production

Sustainable consumption and production (SCP) is at the core of the United Nations Sustainable Development Goals (SDGs), specifically addressed by SDG 12. This goal aims to "ensure sustainable consumption and production patterns," acting as a cross-cutting theme that feeds into other SDGs such as those related to climate change, poverty, health, and sustainable cities.

SCP involves using services and products in a way that minimizes environmental damage, preserves natural resources, and promotes social equity. The purpose is to decouple economic growth from environmental degradation, which means pursuing economic development in a way that can be sustained by the planet over the long term. SCP requires changes at all levels of society, from individuals to businesses to governments.

At the individual level, SCP implies making lifestyle choices that reduce environmental impact. This might include reducing, reusing, and recycling waste, choosing products with less packaging, and opting for more sustainable forms of transport like cycling or public transport.

For businesses, SCP entails adopting sustainable business models and practices. This could include improving resource efficiency, investing in renewable energy, designing products that are durable and recyclable, and ensuring fair labor practices.

At the government level, SCP involves implementing policies that support sustainable business practices and incentivize sustainable consumer behavior. This might involve regulations to reduce pollution, subsidies for renewable energy, and campaigns to raise awareness about sustainable consumption.

SCP also plays a role in several other SDGs. For example, sustainable production practices can help mitigate climate change (SDG 13) by reducing greenhouse gas emissions. Additionally, by reducing the pressure on natural resources, SCP supports the goals related to life below water (SDG 14) and life on land (SDG 15).

While progress has been made in certain areas, challenges remain in achieving the shift towards SCP. These include existing patterns of overconsumption, limited awareness about the impacts of consumption, and the need for technological innovation to enable more sustainable production.

Elsevier, Sustainable Materials and Technologies, Volume 15, April 2018
As the technologies we use as a society have advanced, so have the materials used in these technologies. Some of these materials are exotic and highly specialized, making them particularly vulnerable to supply disruptions and supply disruptions particularly impactful. Such materials are designated as “critical” materials. Their level of criticality can be identified by accounting for a number of factors related to their supply risk and the extent to which a supply disruption would impact business operations or society at large.
Over the past decade, raw material price spikes have called attention to the supply security of a variety of critical materials, including rhenium, rare earth elements, and helium. While market forces play an important role in creating and resolving these situations, transitions in technology also create step-changes in demand that increase or decrease the criticality of different materials. With an appropriate understanding of how materials are used in various applications, it is possible to explore the critical materials implications associated with the introduction of new technologies.
Elsevier, Sustainable Materials and Technologies, Volume 15, April 2018
According to the reports on critical raw materials for the EU, a raw material is considered critical if it has a high economic importance to the EU combined with high supply risk. Supply risk is considered to arise from a combination of several factors, namely a high concentration of production in countries with poor governance, limited material substitutability, and poor end-of-life recycling rates. A number of industry activities, policy initiatives and research projects have recently been initiated in Europe with the aim to secure an adequate supply of raw materials.
Elsevier, Sustainable Materials and Technologies, Volume 15, April 2018
According to the reports on critical raw materials for the EU, a raw material is considered critical if it has a high economic importance to the EU combined with high supply risk. Supply risk is considered to arise from a combination of several factors, namely a high concentration of production in countries with poor governance, limited material substitutability, and poor end-of-life recycling rates. A number of industry activities, policy initiatives and research projects have recently been initiated in Europe with the aim to secure an adequate supply of raw materials.

Use phase fuel consumption is responsible for the majority of an automobile's life cycle energy consumption and greenhouse gas (GHG) emissions. Lightweighting is an important strategy to reduce use phase fuel consumption and potentially reduce vehicle life cycle impacts. A popular lightweighting technique is material substitution, in which conventional materials (e.g., iron, steel) are replaced with lighter ones (e.g., aluminum, magnesium). Material substitution, however, often results in higher material production impacts.

A drone's eye view of a root crop planter, pulled by a tractor as it works in the field
This article explores how innovations can be used to advance goals 2 (zero hunger) and 12 (sustainable consumption and production). Nematicides - products for controlling soil-borne pests in root crops - are under threat of further regulation or withdrawal due to their toxicity. The Nematicide Stewardship Programme is demonstrating they can be used responsibly and safely to ensure their approval is maintained. But one farmer has taken it a step further by using technology to ensure his nematicide is applied accurately.
As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region.
PSI Trade show - award logo
Supporting Goal 12: Responsible consumption and production, the PSI Sustainability Awards recognise the sustainable potential and distinct self-responsibility of the promotional products industry and award sustainability achievements comprehensively
Plastics recycling - PET Recycling bag
Supporting Goal 12. Higher plastics recycling targets in the EU do not necessarily have to be detrimental to EU polymers producers, who will find new business opportunities in the recycling industry. EU countries will need to improve their recycling systems in order to achieve a more unified approach.
PET Bottles recycling - 'single circular economy', taxes on plastics
Supporting Goal 12. The EU should keep and recycle its “valuable plastic” within a “single circular economy”, according to the European Commission’s vice president for jobs, growth, investment and competitiveness

Pages