Chemicals and waste

The management of chemicals and waste is a crucial aspect of achieving the Sustainable Development Goals (SDGs), a collection of 17 interlinked global goals designed to be a "blueprint to achieve a better and more sustainable future for all" by 2030. These goals were set up in 2015 by the United Nations General Assembly and are intended to be achieved by the year 2030. They address global challenges, including those related to poverty, inequality, climate change, environmental degradation, peace, and justice.

SDG 12, which focuses on Responsible Consumption and Production, is directly related to the management of chemicals and waste. This goal aims to ensure sustainable consumption and production patterns, which includes the environmentally sound management of chemicals and waste. The mismanagement of these elements can have severe environmental and health impacts, thus undermining the objectives of SDG 12.

One of the critical links between chemical and waste management and the SDGs is to human health, as outlined in SDG 3, which aims to ensure healthy lives and promote well-being for all at all ages. Improper handling and disposal of chemicals and waste can lead to pollution and contamination, which can have direct adverse effects on human health. This includes increased risks of diseases, long-term health conditions, and impacts on the well-being of communities, especially those living in close proximity to waste disposal sites or industrial areas.

The impact of waste management also extends to climate change, addressed in SDG 13. Excessive waste generation, particularly organic waste in landfills, contributes to the production of greenhouse gases like methane, a potent contributor to global warming. Additionally, the production and disposal of plastics, electronic waste, and other non-biodegradable materials contribute significantly to carbon emissions. Effective management and reduction of waste are essential to mitigate climate change impacts.

The preservation of life below water (SDG 14) and life on land (SDG 15) is also heavily influenced by how chemicals and waste are managed. Pollution from chemicals and waste can severely impact aquatic ecosystems, harming marine life and biodiversity. Similarly, terrestrial ecosystems and wildlife are at risk from land pollution and habitat destruction caused by improper waste disposal and chemical spills.

Furthermore, SDG 8, which focuses on promoting sustained, inclusive, and sustainable economic growth, full and productive employment, and decent work for all, is impacted by the management of chemicals and waste. Workers in industries dealing with chemicals and waste are often exposed to hazardous conditions. Ensuring their safety and health is a key aspect of achieving this goal. Moreover, sustainable waste management can create new job opportunities and contribute to economic growth through recycling and waste-to-energy sectors.

The effective and environmentally sound management of chemicals and waste is not only essential for achieving SDG 12 but also intersects with several other SDGs. It is a fundamental component of sustainable development, impacting human health, climate change, biodiversity, and economic growth. Addressing these challenges requires a holistic approach, encompassing strict regulatory frameworks, technological innovation, public awareness, and international cooperation to ensure a sustainable future.

Elsevier,

Current Opinion in Green and Sustainable Chemistry, Volume 13, October 2018

A brief review of Chilean policies on sustainability along with the academic efforts related to green chemistry, in order with this new scenario are discussed. Topics considered are extraction processes, new solvents, CO2 transformation and emerging photovoltaics materials.

The use of biomass for energy production is one way to ensure energy security and address the environmental issues related to the use of fossil fuels in developing countries. Small and medium-sized enterprises (SMEs) need electric power and thermal energy for their activities. In Burkina Faso, this type of thermal energy is generally produced by SMEs from firewood. However, cashew companies produce a large amount of waste (shell, press cake, nut shell liquid) which can be converted into fuel. Separating the cashew nut from the shell requires two energy-intensive steps: roasting and drying.
Bruce H. Lipshutz is currently a professor of chemistry at the University of California, Santa Barbara. His research program has, for decades, focused mainly on the development of new reagents and methodologies that are especially general and useful for the synthetic community. Of late, his group pays special attention to synthetic chemistry that is environmentally responsible.
The authors work at the Green Chemistry Centre of Excellence (GCCE) at the University of York and are all currently involved in the H2020-BBI-funded project ReSolve for the development of safer bio-based solvents. Solvent applications for dihydrolevoglucosenone (Cyrene) and 2,2,5,5-tetramethyloxloane (TMO) are among their prominent discoveries. Dr. James Sherwood leads the Alternative Solvents Technology Platform at the GCCE. His research interests include solvent effects in organic synthesis and the substitution of hazardous solvents with novel bio-based solvents. Dr.
In 2007, John Warner and Jim Babcock founded the Warner Babcock Institute for Green Chemistry and, with Amy Cannon, founded the green chemistry education nonprofit organization Beyond Benign. John is the recipient of the 2004 Presidential Award for Excellence in Science Mentoring and the 2014 Perkin Medal. In addition, John is one of the founders of the field of green chemistry and is co-author of the defining textbook Green Chemistry: Theory and Practice.
Elsevier, Sustainable Materials and Technologies, Volume 17, September 2018
An ability to separate battery electrode materials while preserving functional integrity is essential to close the loop of material use in lithium-ion batteries. However, a low-energy and low-cost separation system that selectively recovers electrode materials has not yet been established. In this study, froth flotation experiments were carried out with a variety of new and spent lithium-ion batteries using kerosene as the collector. The products were characterized using thermogravimetric and chemical analysis.
Waste Li foils in the spent experimental Li-coin-cells may bring the potential risk and the waste of Li-resource if they aren't reasonably treated in time. For this purpose, waste Li foils were recycled in the form of black LiFePO4/C powders with the recovery of about 80% in this work.

John A. Gladysz is a Distinguished Professor of Chemistry at Texas A&M University, where he holds the Dow Chair in Chemical Invention. He began his academic career at the University of California, Los Angeles and has also held appointments at the University of Utah and Universität Erlangen-Nürnberg. His group's current research centers around organometallic chemistry and branches into catalysis, organic synthesis, enantioselective reactions, stereochemistry, mechanism, and materials and green chemistry. John A.

Elsevier,

Sustainable Materials and Technologies, Volume 17, September 2018

There is a need to develop technology to enable a resource-efficient and economically feasible recycling system for lithium-ion batteries and thus assure the future supply of the component materials. Lithium-ion batteries are complex products, and designs and materials are still evolving, which makes planning for future recovery more challenging. Several processes for recycling are proposed or operating, and each has advantages and disadvantages. This paper compares these processes on technical and economic bases, elucidating differences in benefits as a function of cathode composition.

Elsevier, Sustainable Materials and Technologies, Volume 16, July 2018
This paper contributes to the understanding of metal demand development over time by illustrating the impacts of different aspects of technological change using historical data. We provide a direct, quantitative comparison of relative change in global primary production for 30 metals over 21 years (1993–2013), capturing the range and variation of demand development for different metals within this period. The aspects of technological change contributing to this variation are investigated in more depth for nine metals.

Pages