Chemicals and waste

The management of chemicals and waste is a crucial aspect of achieving the Sustainable Development Goals (SDGs), a collection of 17 interlinked global goals designed to be a "blueprint to achieve a better and more sustainable future for all" by 2030. These goals were set up in 2015 by the United Nations General Assembly and are intended to be achieved by the year 2030. They address global challenges, including those related to poverty, inequality, climate change, environmental degradation, peace, and justice.

SDG 12, which focuses on Responsible Consumption and Production, is directly related to the management of chemicals and waste. This goal aims to ensure sustainable consumption and production patterns, which includes the environmentally sound management of chemicals and waste. The mismanagement of these elements can have severe environmental and health impacts, thus undermining the objectives of SDG 12.

One of the critical links between chemical and waste management and the SDGs is to human health, as outlined in SDG 3, which aims to ensure healthy lives and promote well-being for all at all ages. Improper handling and disposal of chemicals and waste can lead to pollution and contamination, which can have direct adverse effects on human health. This includes increased risks of diseases, long-term health conditions, and impacts on the well-being of communities, especially those living in close proximity to waste disposal sites or industrial areas.

The impact of waste management also extends to climate change, addressed in SDG 13. Excessive waste generation, particularly organic waste in landfills, contributes to the production of greenhouse gases like methane, a potent contributor to global warming. Additionally, the production and disposal of plastics, electronic waste, and other non-biodegradable materials contribute significantly to carbon emissions. Effective management and reduction of waste are essential to mitigate climate change impacts.

The preservation of life below water (SDG 14) and life on land (SDG 15) is also heavily influenced by how chemicals and waste are managed. Pollution from chemicals and waste can severely impact aquatic ecosystems, harming marine life and biodiversity. Similarly, terrestrial ecosystems and wildlife are at risk from land pollution and habitat destruction caused by improper waste disposal and chemical spills.

Furthermore, SDG 8, which focuses on promoting sustained, inclusive, and sustainable economic growth, full and productive employment, and decent work for all, is impacted by the management of chemicals and waste. Workers in industries dealing with chemicals and waste are often exposed to hazardous conditions. Ensuring their safety and health is a key aspect of achieving this goal. Moreover, sustainable waste management can create new job opportunities and contribute to economic growth through recycling and waste-to-energy sectors.

The effective and environmentally sound management of chemicals and waste is not only essential for achieving SDG 12 but also intersects with several other SDGs. It is a fundamental component of sustainable development, impacting human health, climate change, biodiversity, and economic growth. Addressing these challenges requires a holistic approach, encompassing strict regulatory frameworks, technological innovation, public awareness, and international cooperation to ensure a sustainable future.

Field trial visit to the Center of Excellence for Rice in Malaysia, left to right: Shahrizal Abdul, Rob van Daalen, Raudhah Talib, Dr. Suzana Yusup, Noor Hafizah Ramli and Abu Bakar Ahmad.
The winner of the first ever Green and Sustainable Chemistry Challenge, Dr Suzana Yusup, invited Rob van Daalen (publisher Chemistry and initiator of the Challenge) to make a site visit to see the progress of her project "Biopesticide for Improvement of Paddy Yield". The visit made clear that the Elsevier sustainability program and specifically this challenge have a positive impact on health, environment and society in local communities in Malaysia, enhancing efforts to advance SDGs 1, 6, 12 and 15.
This article highlights one of the winning proposals of the Elsevier Foundation Green & Sustainable Chemistry Challenge - “Biopesticides for improved paddy yield” - led by researcher Dr. Suzana Yusup. Her work shows how bio-pesticides can be safer and more effective than traditional pesticides, contributing to SDGs 8, 12, 13 and 15.
Elsevier,

Electronic Waste, Toxicology and Public Health Issues, 2017, Pages 1-15

Chapter on the public health problem of how to effectively deal with or dispose of the ever-increasing number of old or outdated electronic devices (e-waste) in a safe manner. The goal of SDG target 3.9 is to substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination
Elsevier,

Electronic Waste, Toxicology and Public Health Issues, 2017, Pages 55-61

This chapter will attempt brief review on some of the known factors which define populations, particulary developing countries, at special risk for chemical toxicity from e-waste. The goal of SDG target 3.9 is to substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination
Looking for the best in innovation
ICIS launches the search for the very best in innovation in the chemical industry. Now in their 14th year, the ICIS Innovation Awards seek to recognize and reward companies and individuals that show high levels of innovation in products and processes, as well as providing benefits to the environment and advancing progress towards sustainability. This award raises awareness of the benefits of innovation to the environment and supports SDG 9 Industry, Innovation and Infrastructure.
The existing methods for recycling electronic wastes such as the printed circuit boards (PCB), which contains a large number of components and elements, face significant challenges when considering environmentally benign and easily separable disposal targets. We report here a low-temperature ball milling method that breaks down PCBs all the way into nanoscale particles which further enables enhanced separation of its different base constituent materials that are the polymer, oxide, and metal.
ICIS,

ICIS AFPM Supplement March 2017, pages 32-33

The rush to build large-scale petrochemical complexes in the US Gulf Coast area has encouraged companies to take a collaborative approach to finding and encouraging talented and skilled workers. The drive for growth cannot be achieved without creating decent work for all which advances SDG 8 Decent work and economic growth.
Carbon capture and storage (CCS) technologies are being developed to comply with the intensification of environmental laws and policies. Techniques for carbon capture from exhaust gases include post-combustion, pre-combustion and oxy-combustion. CO2 separation in gas processing is also a relevant application, employing alternatives commonly used in post-combustion, sharing developments and pulling innovations (additional to innovations pushed by knowledge from basic and applied research).
Nutrient recycling has been practiced for thousands of years in China to maintain food production without environmental pollution. In the past three decades, however, the traditional nutrient recycling systems have been replaced with waste treatment systems, which have resulted in rapid and severe environmental pollution.
ICIS,

Chemical Business, 5 January 2017

Carbon dioxide is becoming a valuable raw material for chemical industry
It is a sign of the maturity of the green and biobased chemicals sector that major producers and technology providers are making moves to join the entrepreneurs and start-ups that have been driving the technology forward. This positive trend supports the advancing of SDG 9 Industry, Innovation and Infrastructure, and SDG 7 Affordable and Clean Energy.

Pages