Energy

Energy is a central component of the United Nations' Sustainable Development Goals (SDGs), explicitly reflected in SDG 7: Affordable and Clean Energy. However, the theme of energy cuts across multiple SDGs, demonstrating the interconnectivity of these global goals.

SDG 7's objective is to ensure access to affordable, reliable, sustainable, and modern energy for all. Energy, in its various forms, is a vital driver of economic growth and is pivotal to nearly all aspects of development. Without a steady and reliable supply of energy, societies can hardly progress. However, millions of people around the world still lack access to modern and clean energy services. The emphasis on "affordable and clean" energy within this goal shows the need to transition from traditional energy sources, often characterized by high environmental costs, to more sustainable ones like wind, solar, and hydropower.

Energy's role is also significant in achieving other SDGs. For example, SDG 9: Industry, Innovation, and Infrastructure, emphasizes the need for sustainable and resilient infrastructure with increased resource-use efficiency and greater adoption of clean technologies. It is almost impossible to achieve this without a sustainable energy framework. Similarly, SDG 11: Sustainable Cities and Communities, calls for making cities inclusive, safe, resilient, and sustainable, and one of its targets (11.6) directly refers to the environmental impact of cities, for which energy is a key factor.

Furthermore, energy is a crucial player in SDG 13: Climate Action. The energy sector represents the largest single source of global greenhouse gas emissions. Transitioning to a sustainable energy future, therefore, is critical for tackling climate change. Efforts to reduce emissions and promote clean energy sources are crucial to mitigate climate change and its impacts.

Of all the types of renewable energy, Renewable Natural Gas (RNG) market has been more supported and developed in Canada due to the lower project cost and the existing NG pipeline infrastructure.
Elsevier,

Marc Rosen, Aida Farsi, CHAPTER ONE - Introduction to desalination and sustainable energy, Editor(s): Marc Rosen, Aida Farsi, Sustainable Energy Technologies for Seawater Desalination, Academic Press, 2022, Pages 1-44, ISBN 9780323998727

This chapter introduces key concepts of water desalination systems driven by sustainable energy sources, as we look to meet civilization's water needs through sustainable means - supporting SDG 6 (Clean Water and Sanitation) as well as SDG 7 (Clean and Affordable Energy)
Mitigating and adapting to climate change requires decarbonizing electricity while ensuring resilience of supply, since a warming planet will lead to greater extremes in weather and, plausibly, in power outages. Although it is well known that long-duration outages severely impact economies, such outages are usually not well characterized or modeled in grid infrastructure planning tools. Here, we bring together data and modeling techniques and show how they can be used to characterize and model long-duration outages.
A growing number of governments are pledging to achieve net-zero greenhouse gas emissions by mid-century. Despite such ambitions, realized emissions reductions continue to fall alarmingly short of modeled energy transition pathways for achieving net-zero. This gap is largely a result of the difficulty of realistically modeling all the techno-economic and sociopolitical capabilities that are required to deliver actual emissions reductions.
Elsevier,

Machinery and Energy Systems for the Hydrogen Economy, Volume , 1 January 2022

This chapter advances the UN SDG goals 7, 11, and 12 by reviewing the current state of hydrogen production and markets to determine the most economically viable routes towards introducing clean hydrogen fuel
Elsevier,

Machinery and Energy Systems for the Hydrogen Economy, Volume , 1 January 2022

This chapter advances the UN SDG goals 7, 11, and 12 by reviewing the fundamentals of hydrogen, it's properties, and its use as a sustainable fuel source
Elsevier,

Biofuels and Biorefining: Volume 1: Current Technologies for Biomass Conversion, Volume , 1 January 2022

This chapter advances the UN SDG goals 7, 11, and 12 by discussing recent developments in biohydrogen production, including various biomass used as feedstock, conventional technologies for biohydrogen production, economics of biohydrogen production, and the application of biohydrogen
Elsevier,

3rd Generation Biofuels: Disruptive Technologies to Enable Commercial Production, Volume , 1 January 2022

This chapter advances the UN SDG goals 7, 11, and 12 by envisioning the biodiesel-from-microalgae plant of the future through the exploitation of genetically modified algal strains, renewable (mainly solar) power sources, and wastewater/effluent treatment facilities for nutrient and water supply with a one-step harvesting/lipid process.
Elsevier,

3rd Generation Biofuels: Disruptive Technologies to Enable Commercial Production, Volume , 1 January 2022

This chapter advances the UN SDG goals 7, 11, and 12 by examining the current state-of-the art technologies applied for the extraction of compounds from microalgae/pretreatment and downstream processing for biofuels and chemicals from microalgae.
This chapter contributes to SDG goals 7, 11, and 13, by reviewing sustainable renewable energy policy and regulation, particularly in terms of climate change mitigation.

Pages