Forests

Forests, representing an integral part of the planet's biosphere, play a significant role in achieving the United Nations' Sustainable Development Goals (SDGs). They function as extensive carbon sinks, absorbing greenhouse gases and contributing to SDG 13 (Climate Action), and they provide a wealth of biodiversity, aligning with SDG 15 (Life on Land).

Forests are indispensable in fostering clean air and water, acting as natural filters, thus contributing to SDG 6 (Clean Water and Sanitation) and SDG 3 (Good Health and Well-being). They are also a vital source of food, medicine, and raw materials for billions of people, directly supporting SDG 1 (No Poverty), SDG 2 (Zero Hunger), and SDG 8 (Decent Work and Economic Growth). Indigenous and local communities are often dependent on forests, tying in with SDG 10 (Reduced Inequalities) and SDG 11 (Sustainable Cities and Communities).

The responsible management of forests promotes SDG 12 (Responsible Consumption and Production) and also creates opportunities for SDG 4 (Quality Education), with forest-based learning enhancing environmental literacy. Lastly, forests serve as potent buffers against natural disasters, fostering resilience and adaptation in the face of changing climate conditions, thereby contributing to SDG 11 (Sustainable Cities and Communities). As custodians of biodiversity and vital ecosystems, forests are fundamental to the holistic accomplishment of the SDGs. They embody the interconnectedness of these goals, demonstrating how progress in one area can stimulate advancements in another.

Understanding this interrelation and harnessing it for sustainable development policies is a cornerstone of the 2030 Agenda for Sustainable Development. By maintaining and restoring forest ecosystems, we are not just preserving landscapes; we are making a commitment to the sustainability of our planet and future generations.

Using newly-released and globally available high-resolution remote sensing data on forest loss, we update the assessment of the cross-country determinants of deforestation in developing countries. We validate most of the major determinants found in the previous literature, generally based on earlier time-periods, except for the role of institutional quality. Agricultural trade, hitherto relatively neglected, is found to be one of the main factors causing deforestation.

Reducing large-scale deforestation in commodity frontiers remains a key challenge for climate change mitigation and the conservation of biodiversity. Public and private anti-deforestation policies have been shown to effectively reduce forest loss, but the conditions under which such policies get adopted are rarely examined. Here we propose a set of conditions that we expect to be associated with the adoption of effective anti-deforestation policies in commodity frontiers.

Natural World Heritage Sites (NWHS), via their formal designation through the United Nations, are globally recognized as containing some of the Earth's most valuable natural assets. Understanding changes in their ecological condition is essential for their ongoing preservation. Here we use two newly available globally consistent data sets that assess changes in human pressure (Human Footprint) and forest loss (Global Forest Watch) over time across the global network of terrestrial NWHS.
Natural World Heritage Sites (NWHS), via their formal designation through the United Nations, are globally recognized as containing some of the Earth's most valuable natural assets. Understanding changes in their ecological condition is essential for their ongoing preservation. Here we use two newly available globally consistent data sets that assess changes in human pressure (Human Footprint) and forest loss (Global Forest Watch) over time across the global network of terrestrial NWHS.
Elsevier, Renewable and Sustainable Energy Reviews, Volume 68, 1 February 2017
Trees, and their derivative products, have been used by societies around the world for thousands of years. Contemporary construction of tall buildings from timber, in whole or in part, suggests a growing interest in the potential for building with wood at a scale not previously attainable. As wood is the only significant building material that is grown, we have a natural inclination that building in wood is good for the environment. But under what conditions is this really the case?
The Blueprint for Business Leadership on the SDGs aims to inspire all business — regardless of size, sector or geography — to take leading action in support of the achievement of the Sustainable Development Goals (SDGs). It illustrates how the five leadership qualities of Ambition, Collaboration, Accountability, Consistency, and Intentional can be applied to a business' strategy, business model, products, supply chain, partnerships, and operations to raise the bar and create impact at scale. The Blueprint is a tool for any business that is ready to advance its principled approach to SDG action to become a leader. This chapter relates specifically to SDG 15.
Effective implementation of rules on reduced emission from avoided deforestation and forest degradation (REDD. +) depends on the compatibility between these rules and existing sectoral policies associated with forests. This paper applies content analysis of policy documents, semi-structured interviews and case study analysis to examine the interplay between REDD. + rules and Kenyan sectorial policies and local socioeconomic settings. Results reveal that the preparation of national REDD.
Focused on a Green Future
Italy's leading petrochemical producer, Versalis has taken a fundamental shift in its strategy and direction, to renew its focus on innovation and green chemistry, providing opportunities for growth. This is the ICIS/Versalis supplement about green and bio-based chemicals and sustainabliity with videos embedded. Green chemistry fits in with SDG 9 Industry Innovation and SDG 7 Affordable Clean Energy.
Based on literature and six country studies (Belgium, Denmark, Finland, Netherlands, Sweden, Slovakia) this paper discusses the compatibility of the EU 2020 targets for renewable energy with conservation of biodiversity.We conclude that increased demand for biomass for bioenergy purposes may lead to a continued conversion of valuable habitats into productive lands and to intensification, which both have negative effects on biodiversity.
Wood residues from forest harvesting or disturbance wood from wildfire and insect outbreaks may be viewed as biomass "feedstocks" for bioenergy production, to help reduce our dependence on fossil fuels. Biomass removals of woody debris may have potential impacts on forest biodiversity and ecosystem function. Forest-floor small mammals, such as the southern red-backed vole (Myodes gapperi) that typically disappear after clearcut harvesting, may serve as ecological indicators of significant change in forest structure and function.

Pages