Energy

Energy is a central component of the United Nations' Sustainable Development Goals (SDGs), explicitly reflected in SDG 7: Affordable and Clean Energy. However, the theme of energy cuts across multiple SDGs, demonstrating the interconnectivity of these global goals.

SDG 7's objective is to ensure access to affordable, reliable, sustainable, and modern energy for all. Energy, in its various forms, is a vital driver of economic growth and is pivotal to nearly all aspects of development. Without a steady and reliable supply of energy, societies can hardly progress. However, millions of people around the world still lack access to modern and clean energy services. The emphasis on "affordable and clean" energy within this goal shows the need to transition from traditional energy sources, often characterized by high environmental costs, to more sustainable ones like wind, solar, and hydropower.

Energy's role is also significant in achieving other SDGs. For example, SDG 9: Industry, Innovation, and Infrastructure, emphasizes the need for sustainable and resilient infrastructure with increased resource-use efficiency and greater adoption of clean technologies. It is almost impossible to achieve this without a sustainable energy framework. Similarly, SDG 11: Sustainable Cities and Communities, calls for making cities inclusive, safe, resilient, and sustainable, and one of its targets (11.6) directly refers to the environmental impact of cities, for which energy is a key factor.

Furthermore, energy is a crucial player in SDG 13: Climate Action. The energy sector represents the largest single source of global greenhouse gas emissions. Transitioning to a sustainable energy future, therefore, is critical for tackling climate change. Efforts to reduce emissions and promote clean energy sources are crucial to mitigate climate change and its impacts.

Towns and cities worldwide emit significant pollution and are also increasingly affected by pollution's health and climate impacts. Local decision makers can alleviate these impacts by transitioning the energy they control to 100% clean, renewable energy and energy efficiency. This study develops roadmaps to transition 53 towns and cities in the United States, Canada, and Mexico to 100% wind, water, and sunlight (WWS) in all energy sectors by no later than 2050, with at least 80% by 2030.
Activities in the food-energy-water nexus require ecosystem services to maintain productivity and prevent ecological degradation. This work applies techno-ecological synergy concepts in an optimization formulation to design a system for co-producing food and energy under constraints on ecological sustainability. The system includes land use activities and biomass conversion processes for the production of energy carriers, as well as supporting ecosystems that increase the supply of key ecosystem services.
Elsevier,

Current Opinion in Green and Sustainable Chemistry, Volume 13, October 2018

A brief review of Chilean policies on sustainability along with the academic efforts related to green chemistry, in order with this new scenario are discussed. Topics considered are extraction processes, new solvents, CO2 transformation and emerging photovoltaics materials.

The concern regarding alternate sources of energy is mounting day-by-day due to the effect of pollution that is damaging the environment. Algae are a diverse group of aquatic organisms have an efficiency and ability in mitigating carbon dioxide emissions and produce oil with a high productivity which has a lot of potential applications in producing biofuel, otherwise known as the third-generation biofuel.

The use of biomass for energy production is one way to ensure energy security and address the environmental issues related to the use of fossil fuels in developing countries. Small and medium-sized enterprises (SMEs) need electric power and thermal energy for their activities. In Burkina Faso, this type of thermal energy is generally produced by SMEs from firewood. However, cashew companies produce a large amount of waste (shell, press cake, nut shell liquid) which can be converted into fuel. Separating the cashew nut from the shell requires two energy-intensive steps: roasting and drying.
Elsevier, Thermal Science and Engineering Progress, Volume 7, September 2018
Rural communities in developing countries often require small cold storage for vital medicines while having no access to electricity. The utilization of waste heat – produced in biomass burning cookstoves during daily cooking routines – to power a thermoacoustic engine driving a thermoacoustic refrigerator is investigated. The simplicity and affordability is met by the use of atmospheric air as working medium, cheap PVC ducting for acoustic waveguides and locally available blacksmithing technologies for simple heat exchangers.
Waste Li foils in the spent experimental Li-coin-cells may bring the potential risk and the waste of Li-resource if they aren't reasonably treated in time. For this purpose, waste Li foils were recycled in the form of black LiFePO4/C powders with the recovery of about 80% in this work.
Elsevier, Sustainable Materials and Technologies, Volume 17, September 2018
An ability to separate battery electrode materials while preserving functional integrity is essential to close the loop of material use in lithium-ion batteries. However, a low-energy and low-cost separation system that selectively recovers electrode materials has not yet been established. In this study, froth flotation experiments were carried out with a variety of new and spent lithium-ion batteries using kerosene as the collector. The products were characterized using thermogravimetric and chemical analysis.
Elsevier,

Sustainable Materials and Technologies, Volume 17, September 2018

There is a need to develop technology to enable a resource-efficient and economically feasible recycling system for lithium-ion batteries and thus assure the future supply of the component materials. Lithium-ion batteries are complex products, and designs and materials are still evolving, which makes planning for future recovery more challenging. Several processes for recycling are proposed or operating, and each has advantages and disadvantages. This paper compares these processes on technical and economic bases, elucidating differences in benefits as a function of cathode composition.

Sustainable Materials and Technologies, Volume 17, September 2018, e00074

This article observes how the criticality of raw materials is perceived and handled within Materials Science, contributing to goals 9 and 12

Pages