Energy

Energy is a central component of the United Nations' Sustainable Development Goals (SDGs), explicitly reflected in SDG 7: Affordable and Clean Energy. However, the theme of energy cuts across multiple SDGs, demonstrating the interconnectivity of these global goals.

SDG 7's objective is to ensure access to affordable, reliable, sustainable, and modern energy for all. Energy, in its various forms, is a vital driver of economic growth and is pivotal to nearly all aspects of development. Without a steady and reliable supply of energy, societies can hardly progress. However, millions of people around the world still lack access to modern and clean energy services. The emphasis on "affordable and clean" energy within this goal shows the need to transition from traditional energy sources, often characterized by high environmental costs, to more sustainable ones like wind, solar, and hydropower.

Energy's role is also significant in achieving other SDGs. For example, SDG 9: Industry, Innovation, and Infrastructure, emphasizes the need for sustainable and resilient infrastructure with increased resource-use efficiency and greater adoption of clean technologies. It is almost impossible to achieve this without a sustainable energy framework. Similarly, SDG 11: Sustainable Cities and Communities, calls for making cities inclusive, safe, resilient, and sustainable, and one of its targets (11.6) directly refers to the environmental impact of cities, for which energy is a key factor.

Furthermore, energy is a crucial player in SDG 13: Climate Action. The energy sector represents the largest single source of global greenhouse gas emissions. Transitioning to a sustainable energy future, therefore, is critical for tackling climate change. Efforts to reduce emissions and promote clean energy sources are crucial to mitigate climate change and its impacts.

Elsevier,

Sustainable Energy Technologies and Assessments, Volume 22, August 2017

Access to reliable, affordable and sustainable energy is essential for improving living standards, development and economic growth. From a healthcare perspective, energy is a critical parameter for delivering and improving healthcare services and life-saving interventions in the Global South. This review provides an estimation of the energy needs of different healthcare facilities as a function of patient capacity and services provided. It also presents the strengths and limitations of several energy sources that can be used to meet these needs.

Climate change, population growth and rapidly increasing urbanisation severely threaten water quantity and quality in Sub-Saharan Africa. Treating wastewater is necessary to preserve the water bodies; reusing treated wastewater appears a viable option that could help to address future water challenges. In areas already suffering energy poverty, the main barrier to wastewater treatment is the high electricity demand of most facilities.

Fossil fuel subsidies are a key barrier for economic development and climate change mitigation. While the plunge in international fuel prices has increased the political will to introduce fossil fuel subsidy reforms, recently introduced reforms may risk backsliding when fuel prices rebound − particularly if they fail to address the underlying mechanisms that create demand for low fossil fuel prices. Extant literature has mostly focused on the consequences of fossil fuel subsidies, including their economic or environmental impact, and the social contract that make their reform difficult.

John Dale left and Derek Burgoyne
Finishing 3,000 dairy-bred beef cattle on waste food while producing green energy and fertiliser as by-products is the sustainable model for one Cambridgeshire farmer and his business partner. This approach helps meet the criteria for SDG 7 of access for all to affordable, reliable, sustainable and modern energy and SDG 12 which promotes responsible consumption and production.
It is no secret to anyone living in Beirut or a similar modern city in a semi-arid tropical country in the summer that their home has become a concrete forest and an urban heat island. Old wood or stone houses and their gardens have been replaced by concrete towers and parking lots, in the name of development. The result is searing summer nights, a drastic loss of insect and avian biodiversity, and a large increase in energy usage for interior climate control. These problems are experienced in rapidly developing urban centers worldwide.
Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. This paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations.
RX,

All-Energy, 10-11 May 2017

All-Energy
All-Energy is the UK’s largest renewable energy event, providing industry suppliers and thought-leaders the opportunity to connect with new customers and expand business networks in this fast-changing marketplace as well as learn about latest technologies and solutions. Presentations from the 2017 event provide invaluable insights into bioenergy, solar, offshore and onshore wind, hydropower and wave & tidal sectors, as well as energy storage, low carbon transport and sustainable cities solutions. This is directly related to SDG 7: Affordable and clean energy.
Equality between economic progress and environmental sustainability is essential for a developing country like India. In the present time, the economy of India is growing rapidly in a vibrant mode and an efficient way, which in turn demands huge uninterrupted energy supplies. The country's energy needs are met mostly by the usage of fossil fuels and nearly 70% of electricity is generated from coal based power plants. In India, nearly 840 million people depend on traditional biomass to satisfy their energy necessities.
Elsevier, Current Opinion in Green and Sustainable Chemistry, Volume 4, 1 April 2017
Chalcopyrite semiconductors are used in thin film solar cells with the highest efficiencies, in particular for flexible solar cells. Recent progress has been made possible by an alkali postdeposition treatment. Other important trends are the development of tandem cells and of ultrathin solar cells. Recent progress has forwarded the understanding of off-stoichiometry and of bulk defects in these materials.
Elsevier, Current Opinion in Green and Sustainable Chemistry, Volume 4, 1 April 2017
Metal-halide perovskite semiconductors are certainly one of the hottest topic in solar energy conversion. Optimization of both the absorber material and device architecture has led to an astoundingly rapid increase in the reported device efficiencies. Initially developed in the context of dye-sensitized solar cell research, metal-halide perovskite devices now reach efficiency values and hence need to be compared to more conventional photovoltaic technologies such as silicon, copper indium gallium diselenide and cadmium telluride.

Pages