Data & Analytics

Data and analytics are increasingly recognized as fundamental elements in achieving the Sustainable Development Goals (SDGs). These 17 goals, adopted by the United Nations in 2015, aim to address global challenges such as poverty, inequality, climate change, environmental degradation, peace, and justice. Each goal is interconnected, requiring a holistic approach to achieve sustainable development by 2030. Within this framework, SDG 17, "Partnerships for the Goals," is particularly crucial as it highlights the need for high-quality, timely, and reliable data to drive progress across all goals.

The importance of data and analytics in realizing the SDGs cannot be overstated. Accurate and insightful data is necessary for several key aspects: assessing current progress, identifying existing gaps, informing policy-making, and guiding the allocation of resources. For instance, in addressing SDG 1, "No Poverty," data helps in understanding the demographics of poverty, allowing for targeted interventions. Similarly, for SDG 3, "Good Health and Well-being," data analytics play a crucial role in tracking disease outbreaks, understanding health trends, and improving healthcare delivery.

In the education sector, under SDG 4, "Quality Education," data can inform about areas where educational resources are lacking or where dropout rates are high, guiding efforts to enhance education systems. Additionally, for SDG 13, "Climate Action," data is indispensable for understanding climate patterns, predicting future scenarios, and formulating strategies to mitigate and adapt to climate change.

Advancements in data collection and analytics methods have opened up new possibilities. Mobile technology, for example, has revolutionized data collection, enabling real-time gathering and dissemination of information even in remote areas. Remote sensing technologies, such as satellite imagery, provide critical data on environmental changes, agricultural patterns, and urban development. These methods not only expand the scope of data collection but also enhance its accuracy and timeliness.

However, challenges remain in harnessing the full potential of data for the SDGs. These include issues related to data availability, quality, accessibility, and interoperability. In many parts of the world, especially in developing countries, there is a significant data deficit. This gap hinders the ability to make informed decisions and effectively address the SDGs. Moreover, data collected must be reliable and relevant to be useful in policy formulation and implementation.

To overcome these challenges, partnerships between governments, private sector, academia, and civil society are vital. These collaborations can foster innovation in data collection and analytics, ensure data sharing, and build capacities for data analysis. Furthermore, there is a need for a global framework to standardize data collection and reporting methods, which will facilitate comparison and aggregation of data across regions and countries.

Elsevier, TrAC - Trends in Analytical Chemistry, Volume 109, December 2018
This review discusses the identification and quantification of microplastic (MP) using Raman microspectroscopy (RM). It addresses scientists investigating MP in environmental and food samples. We show the benefits and limitations of RM from a technical point of view (sensitivity, smallest particle sizes, speed optimizations, analysis artefacts and background effects) and provide an assessment of the relevance of lab analyses and their interpretation (sample sizes for the analysis, uncertainty of the analysis).
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 109, December 2018
The Mediterranean Sea is affected by one of the most significant plastic pollution worldwide. This review critically evaluates the most recent literature on the presence of microplastics in sediments, suggested to be long term sinks and have a high potential to accumulate this kind of marine debris. A picture of microplastic levels in coastal environments is given, evidencing information gaps and considering also estuary, lagoons and areas influenced by the contribution of rivers. A wide range of contamination levels has been found, with the highest in lagoon and estuary environments.
Elsevier,

TrAC - Trends in Analytical Chemistry, Volume 109, December 2018

Explore in-depth analysis on microplastic pollution in soil, its ecological risks, and innovative analytical methods for managing this emerging challenge.
Microplastics pollution in aquatic ecosystems has aroused increasing global concern, leading to an explosive growth of studies regarding microplastics published in the past few years. To date, there is still a lack of standardized methodologies used for the detection of microplastics within environmental samples, thus hampering comparison of the reported data.
Clarifying the scope and activity within the large field of artificial intelligence (AI) can help research leaders, policymakers, funders and investors, and the public navigate AI and understand how it has evolved over time. In doing so, this report provides clues to where AI is headed and how policies might be shaped to continue making advances in a responsible way, contributing to SDG 9.
Elsevier, Resources, Conservation and Recycling, Volume 137, October 2018
A policy and research agenda has emerged in recent years to understand the interconnected risks natural resource systems face and drive. The so-called ‘Food-Energy-Water’ (FEW) nexus has served as a focal point for the conceptual, theoretical and empirical development of this agenda. This special issue provides an opportunity to reflect on whether natural resource use, as viewed through the FEW-nexus lens, provides a useful basis for guiding integrated environmental management.

United Nations University, September 2018. 

Directly relating to SDG 8 (Decent Work and Economic Growth), this report offers an analysis of countries' development spending commitments to achieve target 8.7 (eradicate forced labour, modern slavery and human trafficking).
Elsevier,

Advanced Rehabilitative Technology, Neural Interfaces and Devices, 2018, Pages 1-10

Presents insights into emerging technologies and developments that are currently used or on the horizon in biological systems and mechatronics for rehabilitative purposes. This chapter addresses SDG 10 by providing detailed description of the bio-mechatronic systems used and then presents implementation and testing tactics to address the challenges of rehabilitative applications in areas of bio-signal processing, bio-modelling, neural and muscular interface, and neural devices.
Elsevier, Neuron, Volume 99, 22 August 2018
As scientists and engineers, we must recognize the overwhelming evidence that we each harbor bias that influences our professional decisions. Yet, solving today's increasingly complex public health challenges requires diverse perspectives from multidisciplinary teams. We all have the opportunity to actively promote a more representative scientific community; let's harness the power of collective action to build diverse teams that deliver the most innovative science. Research shows that we all harbor bias that influences professional decisions.
Achieving the United Nations’ 17 Sustainable Development Goals (SDGs) results in many ecological, social, and economic consequences that are inter-related. Understanding relationships between sustainability goals and determining their interactions can help prioritize effective and efficient policy options. This paper presents a framework that integrates existing knowledge from literature and expert opinions to rapidly assess the relationships between one SDG goal and another.

Pages