Global

This content supports SDGs 3 and 10 by providing examples of formal support that can enhance natural and informal supports by recognizing and enhancing a person's capacities, strengthening and connecting social networks, leveraging resources within environments accessed by all citizens, and utilizing technological innovations so people with IDD can achieve their preferred quality of life.
This chapter contributes to SDGs 3 and 10 by a review of the transition planning process, policy related to collaboration and transition planning, and research supporting collaboration during transition to adulthood for young adults with disabilities.
This book chapter addresses SDG 5 and 8 by explaining the stereotype and stereotype threat that presents difficult challenges to women in STEM. This dual hazard impacts standardized testing as well as workplace acceptance and success.
This book chapter addresses SDG 5 and 8 by showcasing how gendered communication styles affect workplace interactions and performance, and STEM fields, which are traditionally male-dominated, frequently exhibit masculine practices that limit women.
Elsevier, Thermal Science and Engineering Progress, Volume 7, September 2018
Rural communities in developing countries often require small cold storage for vital medicines while having no access to electricity. The utilization of waste heat – produced in biomass burning cookstoves during daily cooking routines – to power a thermoacoustic engine driving a thermoacoustic refrigerator is investigated. The simplicity and affordability is met by the use of atmospheric air as working medium, cheap PVC ducting for acoustic waveguides and locally available blacksmithing technologies for simple heat exchangers.
In 2007, John Warner and Jim Babcock founded the Warner Babcock Institute for Green Chemistry and, with Amy Cannon, founded the green chemistry education nonprofit organization Beyond Benign. John is the recipient of the 2004 Presidential Award for Excellence in Science Mentoring and the 2014 Perkin Medal. In addition, John is one of the founders of the field of green chemistry and is co-author of the defining textbook Green Chemistry: Theory and Practice.
Elsevier, Sustainable Materials and Technologies, Volume 17, September 2018
An ability to separate battery electrode materials while preserving functional integrity is essential to close the loop of material use in lithium-ion batteries. However, a low-energy and low-cost separation system that selectively recovers electrode materials has not yet been established. In this study, froth flotation experiments were carried out with a variety of new and spent lithium-ion batteries using kerosene as the collector. The products were characterized using thermogravimetric and chemical analysis.
Waste Li foils in the spent experimental Li-coin-cells may bring the potential risk and the waste of Li-resource if they aren't reasonably treated in time. For this purpose, waste Li foils were recycled in the form of black LiFePO4/C powders with the recovery of about 80% in this work.

John A. Gladysz is a Distinguished Professor of Chemistry at Texas A&M University, where he holds the Dow Chair in Chemical Invention. He began his academic career at the University of California, Los Angeles and has also held appointments at the University of Utah and Universität Erlangen-Nürnberg. His group's current research centers around organometallic chemistry and branches into catalysis, organic synthesis, enantioselective reactions, stereochemistry, mechanism, and materials and green chemistry. John A.

Elsevier,

Sustainable Materials and Technologies, Volume 17, September 2018

There is a need to develop technology to enable a resource-efficient and economically feasible recycling system for lithium-ion batteries and thus assure the future supply of the component materials. Lithium-ion batteries are complex products, and designs and materials are still evolving, which makes planning for future recovery more challenging. Several processes for recycling are proposed or operating, and each has advantages and disadvantages. This paper compares these processes on technical and economic bases, elucidating differences in benefits as a function of cathode composition.

Pages