Biodiversity and ecosystems

Elsevier, TrAC - Trends in Analytical Chemistry, Volume 113, April 2019
Microplastic (MP) studies in freshwater environments are gaining attention due to the huge quantities of plastic particles reported from lakes and rivers and the potential for negative impacts in these environments. Different units have been used to report MP densities, which makes it difficult to compare data and can result in reports of extremely high concentrations that do not reflect the original sample size. We recommended that the density of MPs from bulk samples be reported as number L −1 , while density from net samples should be reported as number m −3 .
Plastic pollution is a global problem since 2016 when its production reached 322 million tonnes, excluding fibers. Daily discharges of microplastics (MPs, defined as
This book chapter addresses goals 9, 12 and 15 by looking at how green nanotechnology can facilitate sustainable methods leading to reduced environmental impacts, improved conservation, and the protection of resources and human health.
Elsevier,

Freshwater Ecology, Third Edition, Aquatic Ecology, 2020, Pages 295-333

This book chapter advances SDG 14 by discussing measures of freshwater species diversity and how and why diversity varies among and within habitats. Also discussed are extinctions caused by humans and some of the associated consequences, as well as consequences of invasive species.
This book chapter addresses goals 12, 7, 11 and 15 by looking at the environmental and economic impact of the utilization of biomass resources.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 112, March 2019
High amounts of macro and microplastic have been reported in rivers, lakes and seas. However, links between the observed pollution and their sources remain unclear. This study aims to clarify these links in the Lake Geneva basin by analysing each step of the local plastic life cycle. Two distinct approaches have been compared: (i) a top-down approach based on modelling socio-economic activities, plastic losses and releases into the lake, and, (ii) a bottom-up approach based on extrapolating plastic flows into the lake based on field measurements from 6 different pathways.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 112, March 2019
Plastics are a frequently observed component of marine debris and there is growing concern about microplastic (MP) ecotoxicity, and the impacts of additives, sorbed hazardous organic contaminants, heavy metals, and biofilm on MP surfaces. The relative importance of MP from different terrestrial and freshwater sources is poorly understood and limits our ability to develop best management practices. This review focuses on evidence and methods for source apportionment of MP in freshwater environments including the use of MP characteristics, mass balance techniques, and surface characteristics.
Elsevier, Materials Today Sustainability, Volume 3-4, March 2019
The built environment is responsible for large negative ecological impacts due in part to the vast amount of materials used in construction. Concurrently, construction and demolition activities result in vast amounts of materials being buried, burnt, and dumped. It is essential therefore to analyze the impact of building materials acquisition, use, and transformation on the ecosystems people inhabit and rely upon for well-being. Typically, this is examined in terms of material use, energy use, and emission of pollutants including greenhouse gases.
Elsevier, Trends in Ecology and Evolution, Volume 34, February 2019
There is worldwide concern about the environmental costs of conventional intensification of agriculture. Growing evidence suggests that ecological intensification of mainstream farming can safeguard food production, with accompanying environmental benefits; however, the approach is rarely adopted by farmers. Our review of the evidence for replacing external inputs with ecosystem services shows that scientists tend to focus on processes (e.g., pollination) rather than outcomes (e.g., profits), and express benefits at spatio-temporal scales that are not always relevant to farmers.
Characterising microplastics based on spectroscopic measurements is one key step of many studies that analyse the fate of microplastics in the environment. Over the years, many potential sources of error were identified, which can be seen by the implementation of anti-contamination protocols, measuring laboratory blanks or using less aggressive chemicals for sample purification. However, the identification process itself in the meaning of a traceable and transparent documentation is hard to find in many research studies.

Pages