Biodiversity and ecosystems

The presence of plastic debris in the ocean is increasing and several effects in the marine environment have been reported. A great number of studies have demonstrated that microplastics (MPs) adsorb organic compounds concentrating them several orders of magnitude than the levels found in their surrounding environment, therefore they could be potential vectors of these contaminants to biota. However, a consensus on MPs as vectors of persistent organic pollutants (POPs) has not been reached since are opposing views among different researchers on this topic.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 111, February 2019
Following a decade of research on the environmental impacts of microplastics, a knowledge gap remains on the processes by which micro and nanoplastics pass across biological barriers, enter cells and are subject to biological mechanisms. Here we summarize available literature on the accumulation of microplastics and their associated contaminants in a variety of organisms including humans. Most data on the accumulation of microplastics in both field and lab studies are for marine invertebrates.
Interest about interactions between microplastics and organisms is on the rise. Accessing organisms’ responses to these chemically “inert” compounds plays an important role in determining their potential toxicity. Microplastics from the environment tend to accumulate and move through living organisms, inducing a variety of biological effects, such as disturbances in energy metabolism, oxidative balance, antioxidative capacity, DNA, immunological, neurological and histological damage.
Common soil characteristics, nutrients and microbial activity at deeper soil depths are topics seldom covered in agricultural studies. Biogeochemical cycles in deep soils are not yet fully understood. This study investigates the effect of different mineral and organic fertilisation on soil organic matter dynamics, nutrients and bacterial community composition in the first meter of the soil profiles in the long-term maize cropping system experiment Tetto Frati, near the Po River in northern Italy.
Elsevier, Trends in Ecology and Evolution, Volume 34, January 2019
Global biodiversity targets have far-reaching implications for nature conservation worldwide. Scenarios and models hold unfulfilled promise for ensuring such targets are well founded and implemented; here, we review how they can and should inform the Aichi Targets of the Strategic Plan for Biodiversity and their reformulation. They offer two clear benefits: providing a scientific basis for the wording and quantitative elements of targets; and identifying synergies and trade-offs by accounting for interactions between targets and the actions needed to achieve them.
The current regime governing Areas Beyond National Jurisdiction (ABNJ) as a global commons has resulted in overutilization of fisheries resources and patchwork attempts to regulate resource extraction. States are looking to expand resource extraction in ABNJs, including marine genetic resources, creating pressures to regulate these activities. As a result, since 2004, the United Nations has been holding preparatory meetings to lay the groundwork for a new international legally binding instrument (ILBI) to address the gaps left by UNCLOS.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 110, January 2019
The current paper critically reviews the state-of-the-science on (1) microplastics (MP) types and particle concentrations in freshwater ecosystems, (2) MP and nanoplastics (NP) uptake and tissue translocation, (3) MP/NP-induced effects in freshwater organisms, and (4) capabilities of MP/NP to modulate the toxicity of environmental chemicals. The reviewed literature as well as new data on MP and NP concentrations in the river Elbe and on particle uptake into human cells indicate an environmental relevance of small particles in the low nano- and micrometer range higher than that of larger MP.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 110, January 2019
Microplastics are widespread contaminants, virtually present in all environmental compartments. However, knowledge on sources, fate and environmental concentration over time and space still is limited due to the laborious and varied analytical procedures currently used. In this work we critically review the methods currently used for sampling and detection of microplastics, identifying flaws in study design and suggesting promising alternatives.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 110, January 2019
This review provides insight into the abundance, origin, distribution and composition of MPs in the sea surface and water column of the Mediterranean Sea. Literature data on MP particles on the sea surface showed an evident heterogeneous distribution and composition, with marked geographical differences between Mediterranean sub-basins. A standardized protocol for water sampling, extraction and detection of plastic debris is strongly recommended.
Plastics entering the environment will persist and continue to degrade and fragment to smaller particles under the action of various environmental factors. These microplastics (MP) and nanoplastics (NP) are likely to pose a higher environmental impact, as well as they are more prone to adsorb organic contaminants and pathogens from the surrounding media, due to their higher surface area to volume ratio. Little known on their characteristics, fragmentation, distribution and impact on freshwater ecosystems.