There is a wide array of biomass utilisation pathways to mitigate greenhouse gas emissions. The characteristic of biomass, the demand for products, and the local constraints determine the sustainability of utilisation. Generic principles and criteria can be applied to the analysis of specific instances. This work develops a decision-making tool for determining the most sustainable use of biomass for carbon management. The mathematical principles are based on break-even analysis and are visualised in the form of a graphical display for transparent communication of results to decision-makers.
The potential of electron-donating capability in methoxy groups of antioxidant containing protein (ACAP) as organic catalyst is restricted by its low isoelectric point. The goal of this study is to construct endure ACAP based metal-free organic catalyst for hydrogen production from electrolysis of noodle wastewater. The ACAP was coated thermomechanically on PVC sheet and its performance was tested during electrolysis of noodle wastewater. The morphological analysis, phase analysis, and elemental analysis of coated materials have shown a simultaneous pattern with electrolysis performances.
Although deployments of grid-scale stationary lithium ion battery energy storage systems are accelerating, the environmental impacts of this new infrastructure class are not well studied. To date, a small literature of environmental life cycle assessments (LCAs) and related studies has examined associated environmental impacts, but they rely on a variety of methods and system boundaries rather than a consistent approach.
Elsevier, Sustainable Materials and Technologies, Volume 23, April 2020
Lithium-ion batteries (LIBs) have an established role in the consumer electronics markets with minimum risk of replacement from any other contender in the near future. The recent momentum towards electric vehicles and the renewable energy storage market is creating an increased demand for LIBs. The large amount of hazardous waste generated from the disposal of LIBs is driving research into a sustainable approach for LIB treatment and recovery. The positive electrode active materials being the main targeted component as it is the greatest cost contributor to LIBs production.
Contributing to SDGs 3, 7 and 13, this article explores the serious threat posed by climate change to global public health.
This book chapter addresses goals 7, 13 and 11 by looking at ecological technologies that transform natural resources into anthropocentric goods and services.
This review focuses on how culture can complicate and impede attempts at promoting more efficient, more sustainable, and often more affordable forms of mobility as well as energy use in homes and buildings. In simpler terms: it illustrates the cultural barriers to a low-carbon, low-energy future across 28 countries. Rather than focus on energy supply, it deals intently with energy end-use, demand, and consumption.
A possibility of developing an environmental-friendly photovoltaic/thermal (PV/T) solar panel, which can shut high temperature radiation within a panel box, was experimentally confirmed. The panel has a decompression-boiling heat collector, which can absorb heat from the PV module and can keep the air and the cover glass inside the panel box at lower temperature by using lower boiling temperature of working fluid under vacuum condition. The panel also has an emboss-processed cover glass, which can totally reflect the high temperature heat radiation from the PV module within the panel box.
Reductions in carbon emissions have been a focus of the power sector. However, the sector itself is vulnerable to the impacts of global warming. Extreme weather events and gradual changes in climate variables can affect the reliability, cost, and environmental impacts of the energy supply. This paper analyzed the interplay between CO2 mitigation attempts and adaptations to climate change in the power sector using the Long-range Energy Alternative Planning System (LEAP) model.
Various studies have shown that maritime sector needs increased use of zero emission vessels in service by 2030 in order to achieve an absolute reduction in CO2 emissions of 50% by 2050 (consistent with a 2 °C pathway). These vessels, with operational emissions containing zero or negligible greenhouse gas share, would need to represent a significant portion of newbuilds from that point onwards.