The role of science in achieving the United Nations' Sustainable Development Goals (SDGs) cannot be overstated. Science, technology, and innovation are instrumental to addressing the significant challenges encompassed within the 17 SDGs, ranging from poverty and inequality to climate change and biodiversity loss.

Science underpins our understanding of the challenges our world faces and is pivotal in SDG 13 (Climate Action) and SDG 14 (Life Below Water) and 15 (Life on Land), where understanding ecosystems, environmental degradation, and climate change is paramount. Research in the Earth and environmental sciences provides us with knowledge about the severity of these issues and potential mitigation and adaptation strategies.

Furthermore, in SDG 3 (Good Health and Well-being), science in the form of medical research and biotechnology contributes to the development of treatments and preventive measures for various diseases. Vaccines, therapeutic drugs, and disease prevention techniques have been made possible due to advancements in biological and health sciences.

Moreover, technological advancements and innovative solutions, often rooted in science, are essential to achieving SDG 7 (Affordable and Clean Energy), SDG 6 (Clean Water and Sanitation), and SDG 9 (Industry, Innovation, and Infrastructure). From developing renewable energy technologies to creating systems that enhance water and sanitation accessibility, science serves as the bedrock of these innovations.

Science also plays a critical role in SDG 2 (Zero Hunger) by improving agricultural methods, crop yields, and food storage. Through genetic engineering and modern farming techniques, scientists can help increase food security and reduce world hunger.

Finally, science is integral to SDG 4 (Quality Education). A well-rounded education should include a robust scientific curriculum that fosters critical thinking, problem-solving, and a deep understanding of the world. Furthermore, by promoting scientific literacy, societies are better equipped to make informed decisions about policies and practices that affect sustainable development.

To make strides in achieving the SDGs, the scientific community, policymakers, and society must work together. The integration of science into policy-making processes is fundamental in developing and implementing sustainable and impactful strategies that move us closer to accomplishing these ambitious yet achievable goals.

This analysis of 160 cases of artificial intelligence (AI) being used for social good touches on all 17 of the SDGs, with Goal 3, good health and wellbeing, being particularly well documented in terms of AI for good.
In the last decades, energy scarcity has become an important issue globally. Renewable energy sources have gained importance due to limited fossil fuel reserves and increased concerns on climate change. In this regard, municipal wastewater is a remarkable energy source since huge amounts of wastewater are generated and treated all over the world every day. Conventional activated sludge (CAS) process, which has been in use for more than a century, is the most widely applied treatment method for municipal wastewater.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 110, January 2019
Microplastics are widespread contaminants, virtually present in all environmental compartments. However, knowledge on sources, fate and environmental concentration over time and space still is limited due to the laborious and varied analytical procedures currently used. In this work we critically review the methods currently used for sampling and detection of microplastics, identifying flaws in study design and suggesting promising alternatives.

Foundations for Sustainability, A Coherent Framework of Life-Environment Relations, 2019, Pages 205-230

Contributing to SDGs 13, 14 and 15, this chapter explores technology and applications with break-through capacity to contribute solutions to the systemic human-environment problem.

Foundations for Sustainability, A Coherent Framework of Life-Environment Relations, 2019, Pages 1-25

Contributing to SDGs 13, 14 and 15, this introductory chapter presents theory and applications rigorously rooted in science, and we modify the foundations of science so the ground is fertile to nurture the roots of the theory and actions the authors see as necessary to solve the human-environment crisis.

Foundations for Sustainability, A Coherent Framework of Life-Environment Relations, 2019, Pages 27-47

Contributing to SDGs 13, 14 and 15, the authors describe a set of principles, and related goals, mission, and ultimate purpose, for a new science that serves life and humanity.

Biodiversity of Pantepui: The Pristine “Lost World” of the Neotropical Guiana Highlands, 2019, Pages 403-417

This book chapter addresses goals 13 and 15 by summarising studies carried out to date aimed at estimating the potential impact of the projected global warming by the end of this century on the Pantepui biota, particularly on vascular plants.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 109, December 2018
This review discusses the identification and quantification of microplastic (MP) using Raman microspectroscopy (RM). It addresses scientists investigating MP in environmental and food samples. We show the benefits and limitations of RM from a technical point of view (sensitivity, smallest particle sizes, speed optimizations, analysis artefacts and background effects) and provide an assessment of the relevance of lab analyses and their interpretation (sample sizes for the analysis, uncertainty of the analysis).
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 109, December 2018
The Mediterranean Sea is affected by one of the most significant plastic pollution worldwide. This review critically evaluates the most recent literature on the presence of microplastics in sediments, suggested to be long term sinks and have a high potential to accumulate this kind of marine debris. A picture of microplastic levels in coastal environments is given, evidencing information gaps and considering also estuary, lagoons and areas influenced by the contribution of rivers. A wide range of contamination levels has been found, with the highest in lagoon and estuary environments.
Carbon dioxide (CO2) capture using CaO-based adsorbents has recently attracted intense attention from both academic and industrial sectors in the last decade due to the high theoretical capacity of CO2 capture, low cost, and potential use in large scale. However, the successful development of CaO-based adsorbents is limited by significant sintering of adsorbent particles over a number of cycles of CaO carbonation/calcination. In this work, a systematic understanding of fundamental aspects of the cyclic carbonation/calcination of CaO-based materials is reviewed.