Sustainable consumption and production

Sustainable consumption and production (SCP) is at the core of the United Nations Sustainable Development Goals (SDGs), specifically addressed by SDG 12. This goal aims to "ensure sustainable consumption and production patterns," acting as a cross-cutting theme that feeds into other SDGs such as those related to climate change, poverty, health, and sustainable cities.

SCP involves using services and products in a way that minimizes environmental damage, preserves natural resources, and promotes social equity. The purpose is to decouple economic growth from environmental degradation, which means pursuing economic development in a way that can be sustained by the planet over the long term. SCP requires changes at all levels of society, from individuals to businesses to governments.

At the individual level, SCP implies making lifestyle choices that reduce environmental impact. This might include reducing, reusing, and recycling waste, choosing products with less packaging, and opting for more sustainable forms of transport like cycling or public transport.

For businesses, SCP entails adopting sustainable business models and practices. This could include improving resource efficiency, investing in renewable energy, designing products that are durable and recyclable, and ensuring fair labor practices.

At the government level, SCP involves implementing policies that support sustainable business practices and incentivize sustainable consumer behavior. This might involve regulations to reduce pollution, subsidies for renewable energy, and campaigns to raise awareness about sustainable consumption.

SCP also plays a role in several other SDGs. For example, sustainable production practices can help mitigate climate change (SDG 13) by reducing greenhouse gas emissions. Additionally, by reducing the pressure on natural resources, SCP supports the goals related to life below water (SDG 14) and life on land (SDG 15).

While progress has been made in certain areas, challenges remain in achieving the shift towards SCP. These include existing patterns of overconsumption, limited awareness about the impacts of consumption, and the need for technological innovation to enable more sustainable production.

Elsevier, Current Opinion in Green and Sustainable Chemistry, Volume 8, December 2017
From waste to wealth using green chemistry: The way to long term stability
Waste is an extremely valuable resource that we have been accumulating over a long period. Interesting and viable organic “waste-to-resource” opportunities include plastics and food supply chain wastes. Their use as chemical feedstocks will fit well with a circular economy model. Plastics is a major waste opportunity: worldwide we only recycle a few % of the plastic we use, yet plastic manufacturing consumes some 10% of all the oil we consume, and much of it causes serious environmental damage through negligent release.
The replacement of the fossil resources historically employed for chemicals’ production is of major scientific interest the last decades, as a result of the environmental issues arisen and the price versatility of petroleum. Biotechnological routes present promising alternatives for the production of various platform chemicals such as succinic, lactic and muconic acids among others. The utilisation of agricultural and agro-industrial waste and by-product streams would not only reduce the overall production cost but also it would assist towards the direction of the bio-economy era.
Elsevier, Current Opinion in Green and Sustainable Chemistry, Volume 8, December 2017
This article describes how a chemical company identified, developed and marketed a new solvent using EPA standards.
This book chapter advances SDGs 12 and 14 by focusing on the importance of fisheries and its role in human development, considering historical aspects, the main uses of targeted taxa, and their capture methods, which include the use of animals.
Elsevier, Current Opinion in Green and Sustainable Chemistry, Volume 7, October 2017
Enzymes are used in biocatalytic processes for the efficient and sustainable production of pharmaceuticals, fragrances, fine chemicals, and other products. Most bioprocesses exploit chemistry found in nature, but we are now entering a realm of biocatalysis that goes well beyond. Enzymes have been engineered to catalyze reactions previously only accessible with synthetic catalysts. Because they can be tuned by directed evolution, many of these new biocatalysts have been shown to perform abiological reactions with high activity and selectivity.
Elsevier, Current Opinion in Green and Sustainable Chemistry, Volume 7, October 2017
The paper presents the most recent advances in applications of alternative medium to replace polar aprotic solvents such as dimethylformamide (DMF), dimethylacetamide (DMAc) or N-methyl-2-pyrrolidone (NMP). Focus is made on the use of nonionic designer surfactant (e.g. TPGS-750-M) in water instead of traditional organic solvents. Much attention is given to its applications to several commonly used transformations in active pharmaceutical ingredient (API) synthesis, such as amidation reactions, Suzuki–Miyaura cross-couplings, nitro group reductions, and aromatic nucleophilic substitutions.
Ruth Machuma Ndunde with her cow
Nearly 30 years on from its launch by a group of UK West Country dairy farmers, the charity Send a Cow is making a big difference to people’s lives in seven countries in Africa. With its new campaign under way, Farmers Weekly finds out what the charity hopes to achieve and how farmers abroad are benefiting with the help of their UK counterparts. Endeavours such as this support SDG 1 No Poverty, and SDG 2 Zero Hunger and are a great example of SDG 17 Partnerships for the goals in action.
This book chapter addresses goals 3, 12, and 15 by exploring how combining the knowledge derived from traditional medicinal practices with modern science creates endless possibilities for drug discovery and the use of plants in the treatment of a wide array of conditions.
World Smart Energy Week is the world's largest-scale exhibition specialised in renewable energy. Since its launch in 2005, the show serves as the best business platform for those in the energy industry across the globe. This supports SDG 9: to build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation.
A climate mitigation comprehensive solution is presented through the first high yield, low energy synthesis of macroscopic length carbon nanotube (“CNT”) wool from CO2 by molten carbonate electrolysis. The CNT wool is of length suitable for weaving into carbon composites and textiles. Growing CO2 concentrations, and the concurrent climate change and species extinction, can be addressed if CO2 becomes a sought resource rather than a greenhouse pollutant.

Pages