Chemicals and waste

The management of chemicals and waste is a crucial aspect of achieving the Sustainable Development Goals (SDGs), a collection of 17 interlinked global goals designed to be a "blueprint to achieve a better and more sustainable future for all" by 2030. These goals were set up in 2015 by the United Nations General Assembly and are intended to be achieved by the year 2030. They address global challenges, including those related to poverty, inequality, climate change, environmental degradation, peace, and justice.

SDG 12, which focuses on Responsible Consumption and Production, is directly related to the management of chemicals and waste. This goal aims to ensure sustainable consumption and production patterns, which includes the environmentally sound management of chemicals and waste. The mismanagement of these elements can have severe environmental and health impacts, thus undermining the objectives of SDG 12.

One of the critical links between chemical and waste management and the SDGs is to human health, as outlined in SDG 3, which aims to ensure healthy lives and promote well-being for all at all ages. Improper handling and disposal of chemicals and waste can lead to pollution and contamination, which can have direct adverse effects on human health. This includes increased risks of diseases, long-term health conditions, and impacts on the well-being of communities, especially those living in close proximity to waste disposal sites or industrial areas.

The impact of waste management also extends to climate change, addressed in SDG 13. Excessive waste generation, particularly organic waste in landfills, contributes to the production of greenhouse gases like methane, a potent contributor to global warming. Additionally, the production and disposal of plastics, electronic waste, and other non-biodegradable materials contribute significantly to carbon emissions. Effective management and reduction of waste are essential to mitigate climate change impacts.

The preservation of life below water (SDG 14) and life on land (SDG 15) is also heavily influenced by how chemicals and waste are managed. Pollution from chemicals and waste can severely impact aquatic ecosystems, harming marine life and biodiversity. Similarly, terrestrial ecosystems and wildlife are at risk from land pollution and habitat destruction caused by improper waste disposal and chemical spills.

Furthermore, SDG 8, which focuses on promoting sustained, inclusive, and sustainable economic growth, full and productive employment, and decent work for all, is impacted by the management of chemicals and waste. Workers in industries dealing with chemicals and waste are often exposed to hazardous conditions. Ensuring their safety and health is a key aspect of achieving this goal. Moreover, sustainable waste management can create new job opportunities and contribute to economic growth through recycling and waste-to-energy sectors.

The effective and environmentally sound management of chemicals and waste is not only essential for achieving SDG 12 but also intersects with several other SDGs. It is a fundamental component of sustainable development, impacting human health, climate change, biodiversity, and economic growth. Addressing these challenges requires a holistic approach, encompassing strict regulatory frameworks, technological innovation, public awareness, and international cooperation to ensure a sustainable future.

The internal combustion engine (ICE) does not efficiently convert chemical energy into mechanical energy. A majority of this energy is dissipated as heat in the exhaust and coolant. Rather than directly improving the efficiency of the engine, efforts are being made to improve the efficiency of the engine indirectly by using a waste heat recovery system. Two promising technologies that were found to be useful for this purpose were thermoelectric generators (TEGs) and heat pipes. Both TEGs and heat pipes are solid state, passive, silent, scalable and durable.
This book chapter advances SDGs 14 and 3 by discussing the history of aquatic contamination, highlighting major cases where aquatic contamination has become an issue and cases where efficient solutions to environmental problems have been reached.
Elsevier,

Qing Chang,

Chapter 11 - Emulsion, Foam, and Gel,

Editor(s): Qing Chang,

Colloid and Interface Chemistry for Water Quality Control,

Academic Press,

2016,

Pages 227-245,

ISBN 9780128093153

Supports SDG 6 by discussing the application of colloid and surface chemistry in water and wastewater treatment- the only book of its kind to do this.
Studies of waste-to-energy systems have applied a varying range of indicators to assess their sustainability. The sets of indicators prescribed were often based on the respective context and are therefore of varying emphasis. Through a literature review, this research aims to develop a framework of sustainability indicators that can serve as a reference for future research in waste-to-energy systems. Sustainability indicators and their underlying factors from the three pillars of sustainability were consolidated and structured under a proposed framework.
This article highlights the winning proposals of the first edition of the Elsevier Foundation Green & Sustainable Chemistry Challenge. The winning proposals were chosen for their innovative green chemistry aspects and their large positive impact on the environment, contributing to SDGs 6, 12 and 15.
Recent research on CO2 capture is focusing on the optimization of CO2 absorption using amines (mainly monoethanolamine-MEA) in order to minimize the energy consumption of this very energy-intensive process and improve the absorption efficiency. Process optimization is always required and this research is worth and necessary. However, the main concern arises when thinking of the overall process: solvent production, solvent use and regeneration, and environmental effects related to its use/emissions.
Provision of clean water is one of the most important issues worldwide because of continuing economic development and the steady increase in the global population. However, clean water resources are decreasing everyday, because of contamination with various pollutants including organic chemicals. Pharmaceutical and personal care products, herbicides/pesticides, dyes, phenolics, and aromatics (from sources such as spilled oil) are typical organics that should be removed from water.
Elsevier,

Sustainable Materials and Technologies, Volume 1, December 01, 2014

This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using lead-acid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise.

This article describes the key challenges and opportunities in modeling and optimization of biomass-to-bioenergy supply chains. It reviews the major energy pathways from terrestrial and aquatic biomass to bioenergy/biofuel products as well as power and heat with an emphasis on "drop-in" liquid hydrocarbon fuels. Key components of the bioenergy supply chains are then presented, along with a comprehensive overview and classification of the existing contributions on biofuel/bioenergy supply chain optimization.
Focused on a Green Future
Italy's leading petrochemical producer, Versalis has taken a fundamental shift in its strategy and direction, to renew its focus on innovation and green chemistry, providing opportunities for growth. This is the ICIS/Versalis supplement about green and bio-based chemicals and sustainabliity with videos embedded. Green chemistry fits in with SDG 9 Industry Innovation and SDG 7 Affordable Clean Energy.

Pages