Oceans & Seas

Ocean health is critical for human well-being but is threatened by multiple stressors. Parties to the Convention on Biological Diversity agreed to protect 10% of their waters by 2020. The scientific evidence supporting the use of marine protected areas (MPAs) to conserve biodiversity stems primarily from knowledge on fully protected areas, but most of what is being established is partially protected. Here, we assess the protection levels of the 1,062 Mediterranean MPAs.
The IUCN (the International Union for Conservation of Nature) World Conservation Congress called for the full protection of 30% of each marine habitat globally and at least 30% of all the ocean. Thus, we quantitatively prioritized the top 30% areas for Marine Protected Areas (MPAs) globally using global scale measures of biodiversity from the species to ecosystem level.

Plastic Waste and Recycling, Environmental Impact, Societal Issues, Prevention, and Solutions, 2020, pages 223 - 249

This book chapter addresses goals 14, 15, and 12 by exploring the origins of microplastics (relating to our society, production and consumption) and the diverse and harmful impacts of microplastics in the marine environment on life underwater, as well as interactions with humans and other life on land at the end of the cycle.
Elsevier, One Earth, Volume 2, 21 February 2020
Despite global policy commitments to preserve Earth's marine biodiversity, many species are in a state of decline. Using data on 22,885 marine species, we identify 8.5 million km2 of priority areas that complement existing areas of conservation and biodiversity importance. New conservation priorities are found in over half (56%) of all coastal nations, including key priority regions in the northwest Pacific Ocean and Atlantic Ocean.
The Sustainable Development Goals (SDGs) were designed to address interactions between the economy, society, and the biosphere. However, indicators used for assessing progress toward the goals do not account for these interactions. To understand the potential implications of this compartmentalized assessment framework, we explore progress evaluations toward SDG 14 (Life below Water) and intersecting social goals presented in submissions to the UN High-Level Political Forum.
A cationic chelating polymer, namely biopolymer chitosan CHI with a molecular weight of 117 kDa is employed in the present study to bring about the retention of azoic dyes from its aqueous solutions by way of polymer enhanced ultrafiltration (PEUF). The effects of process parameters, namely, operating time, CHI and sodium chloride concentrations, transmembrane pressure, and pH of solution on the retention rate and permeate flux were examined.
Does humanity's future lie in the ocean? As demand for resources continues to grow and land-based sources decline, expectations for the ocean as an engine of human development are increasing. Claiming marine resources and space is not new to humanity, but the extent, intensity, and diversity of today's aspirations are unprecedented. We describe this as the blue acceleration—a race among diverse and often competing interests for ocean food, material, and space.
Biodiversity is in rapid decline, largely driven by habitat loss and degradation. Protected area establishment and management are widely used to maintain habitats and species in perpetuity. Protected area extent has increased rapidly in recent years with area-based targets set within international conservation agreements such as the Convention on Biological Diversity's Aichi Target 11.
The unprecedented global heatwave of 2014–2017 was a defining event for many ecosystems. Widespread degradation caused by coral bleaching, for example, highlighted the vulnerability of hundreds of millions of people dependent on reefs for their livelihoods, well-being, and food security. Scientists and policy makers are now reassessing long-held assumptions about coping with anthropogenic climate change, particularly the assumption that strong local institutions can maintain ecological and social resilience through ecosystem-based management, adaptation, and restoration.
Approximately 70% of the aquatic-based production of animals is fed aquaculture, whereby animals are provided with high-protein aquafeeds. Currently, aquafeeds are reliant on fish meal and fish oil sourced from wild-captured forage fish. However, increasing use of forage fish is unsustainable and, because an additional 37.4 million tons of aquafeeds will be required by 2025, alternative protein sources are needed.