Articles

Elsevier,

Sustainable Cities and Society, Volume 28, 1 January 2017

This paper discusses the CO2 footprint of California's drought during 2012–2014. We show that California drought significantly increased CO2 emissions of the energy sector by around 22 million metric tons, indicating 33% increase in the annual CO2 emissions compared to pre-drought conditions. We argue that CO2 emission of climate extremes deserve more attention, because their cumulative impacts on CO2 emissions are staggering. Most countries, including the United States, do not have a comprehensive a nationwide energy-water plan to minimize their CO2 emissions.

Elsevier,

Sustainable Cities and Society, Volume 28, 1 January 2017

Disasters impacts on urban environment are the result of interactions among natural and human systems, which are intimately linked each other. What is more, cities are directly dependent on infrastructures providing essential services (Lifeline Systems, LS). The operation of LS in ordinary conditions as well as after disasters is crucial. Among the LS, drinking water supply deserves a critical role for citizens. The present work summarizes some preliminary activities related to an ongoing EU funded research project.

Elsevier,

Procedia CIRP, Volume 61, 2017

The European Union (EU) has had laws on the disposal of waste for over 30 years and laws concerning the environmental performance of products for over 20. However, these laws have not formed a cohesive whole - and that is about to change. December 2015 saw the European Commission (the body responsible for proposing new EU legislation) published its Circular Economy Package, with the stated objective of "closing the loop" of product lifecycles. This paper provides an overview of this package and demonstrates why the development of standards underpins future legislation.

Elsevier,

Sustainable Cities and Society, Volume 28, 1 January 2017

The sustainability of water resources depends on the dynamic interactions among the environmental, technological, and social characteristics of the water system and local population. These interactions can cause supply-demand imbalances at diverse temporal scales, and the response of consumers to water use regulations impacts future water availability. This research develops a dynamic modeling approach to simulate supply-demand dynamics using an agent-based modeling framework that couple models of consumers and utility managers with water system models.

Elsevier,

Procedia Manufacturing, Volume 8, 2017

Sustainable manufacturing extends beyond the manufacturing process and the product, to include the supply chain, across multiple product life-cycles as well as end-of-life considerations. Companies can gain a competitive advantage by applying sustainability manufacturing for environmental friendlier products and operations. Industry 4.0 sets new requirements for becoming a sustainable manufacturer where data management, the Internet of Things and extended product service systems are tightly linked with traditional manufacturing processes.

Elsevier,

Climate Risk Management, Volume 16, 2017

The primary objective of this study is to determine what drives states to plan for the impacts of a changing climate. As the climate continues to change, climate scientists have projected changes in water quantities available for human and other uses. This quantitative study examines how state water plans and state hazard mitigation plans address climate change. Plans were coded for the extent to which they address climate change in their calculations regarding future water supply and demand.

Elsevier,

Renewable and Sustainable Energy Reviews, Volume 67, 1 January 2017

The efficient utilization of clean energy resources to meet increasing electricity demand is imposing the integration of the electricity market and the construction of secure transmission mechanisms around the globe. Accordingly, the Association of Southeast Asian Nations (ASEAN) is integrating its large geographical power transmission infrastructure via the ASEAN power grid (APG). This study extensively reviews the energy resources (i.e., fossil fuels and renewables), the current utilization, and the future projection for ASEAN.

Elsevier,

Renewable and Sustainable Energy Reviews, Volume 71, 2017

In this paper, five most emerging renewable energy sources are analyzed. These emerging renewables are either special or advanced forms of the mainstream energy sources (solar, wind, geothermal, biofuels, biomass, and hydro) or brand new technologies. The five emerging renewable technologies discussed in this paper include marine energy, concentrated solar photovoltaics (CSP), enhanced geothermal energy (EGE), cellulosic ethanol, and artificial photosynthesis.

Elsevier, Chem, Volume 1, 1 December 2016
Professor Paul T. Anastas holds the Teresa and H. John Heinz II Chair in Chemistry for the Environment at Yale University and serves as director of the Center for Green Chemistry and Green Engineering at Yale. He has published widely on the subject of green chemistry and has served in the administration of three US presidents. Professor Julie Zimmerman is an internationally recognized engineer whose work is focused on advancing innovations in sustainable technologies.

Pages