Sustainable Cities and Society, Volume 19, December 2015
The elevated air temperature of a city, urban heat island (UHI), increases the heat and pollution-related mortality, reduces the habitats' comfort and elevates the mean and peak energy demand of buildings. To countermeasure this unwanted phenomenon, a series of strategies and policies have been proposed and adapted to the cities. Various types of models are developed to evaluate the effectiveness of such strategies in addition to predict the UHI. This paper explains the compatibility of each type of model suitable for various objectives and scales of UHI studies.
Current Opinion in Insect Science, Volume 12, 1 December 2015
Strategies are urgently required to ensure long term maintenance of current levels of global insect diversity. Yet insect diversity is huge and immensely complex, with many species and individuals making up an important part of compositional and functional biodiversity worldwide. As only a fifth of all insects have been scientifically described, we have the task of conserving largely what is unknown. Inevitably, this means that there are various challenges and shortfalls to address when we aim to future-proof insect diversity.
Energy Reports, Volume 1, 1 November 2015
This paper attempts to investigate the impact of economic growth and CO2 emissions on energy consumption for a global panel of 58 countries using dynamic panel data model estimated by means of the Generalized Method of Moments (GMM) for the period 1990-2012. We also estimate this relationship for three regional panels; namely, from Europe and North Asia, Latin America and Caribbean, and Sub-Saharan, North African and Middle Eastern. The empirical evidence indicates significant positive impact of CO2 emissions on energy consumption for four global panels.
Energy and Buildings, Volume 103, 15 September 2015
It is well known that there is a need to develop technologies to achieve thermal comfort in buildings lowering the cooling and heating demand. Research has shown that thermal energy storage (TES) is a way to do so, but also other purposes can be pursued when using TES in buildings, such as peak shaving or increase of energy efficiency in HVAC systems. This paper reviews TES in buildings using sensible, latent heat and thermochemical energy storage.